\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{absolute colimit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{particular_absolute_colimits}{Particular absolute colimits}\dotfill \pageref*{particular_absolute_colimits} \linebreak \noindent\hyperlink{weights_for_absolute_colimits}{Weights for absolute colimits}\dotfill \pageref*{weights_for_absolute_colimits} \linebreak \noindent\hyperlink{characterizations}{Characterizations}\dotfill \pageref*{characterizations} \linebreak \noindent\hyperlink{particular_absolute_colimits_2}{Particular absolute colimits}\dotfill \pageref*{particular_absolute_colimits_2} \linebreak \noindent\hyperlink{CharacterizationsWeightsForAbsoluteColimits}{Weights for absolute colimits}\dotfill \pageref*{CharacterizationsWeightsForAbsoluteColimits} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{particular_absolute_colimits_3}{Particular absolute colimits}\dotfill \pageref*{particular_absolute_colimits_3} \linebreak \noindent\hyperlink{WExampleseightsForAbsoluteColimits}{Weights for absolute colimits}\dotfill \pageref*{WExampleseightsForAbsoluteColimits} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{absolute colimit} is a [[colimit]] which is [[preserved limit|preserved]] by any [[functor]] whatsoever. In general this happens because the colimit is a colimit for purely ``diagrammatic'' reasons. The notion is most important in [[enriched category theory]]. Of course, there is a dual notion of \textbf{absolute limit}, but it is used less frequently. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} The term ``absolute colimit'' is actually used for two closely related, but distinct, notions. \hypertarget{particular_absolute_colimits}{}\subsubsection*{{Particular absolute colimits}}\label{particular_absolute_colimits} \begin{defn} \label{DefParticular}\hypertarget{DefParticular}{} A particular [[colimit]] diagram in a particular [[category]] $C$ is an \textbf{absolute colimit} if it is [[preserved limit|preserved]] by every [[functor]] with domain $C$. \end{defn} This definition makes sense also in [[enriched category theory]]: for any $V$, a [[weighted colimit]] in a particular $V$-[[enriched category]] $C$ is an \textbf{absolute colimit} if it is preserved by every $V$-functor with domain $C$. Note, however, that a [[conical colimit]] in a $V$-category $C$ may be preserved by all $V$-functors without being preserved by all unenriched functors on the underlying ordinary category $C_o$. Thus, for clarity we may speak of a colimit being \textbf{$V$-absolute}. Generalizing in a different direction, absolute colimits in $Set$-enriched categories can be regarded as the particular case of [[postulated colimit]]s in [[sites]] where the site has the [[trivial topology]]. \hypertarget{weights_for_absolute_colimits}{}\subsubsection*{{Weights for absolute colimits}}\label{weights_for_absolute_colimits} \begin{defn} \label{DefWeight}\hypertarget{DefWeight}{} For a given $V$, a [[weighted colimit|weight]] $\Phi\colon D^{op} \to V$ for colimits is an \textbf{absolute weight}, or a \textbf{weight for absolute colimits}, if $\Phi$-weighted colimits in \emph{all} $V$-categories are preserved by all $V$-functors. \end{defn} Absolute colimits of this sort are also called \textbf{Cauchy colimits}. A $V$-[[category]] which admits all absolute colimits --- that is, all $V$-weighted colimits whose weights are absolute -- is called [[Cauchy complete category|Cauchy complete]]. By the characterization below, it is equivalent to admit \emph{limits} weighted by all weights for absolute limits. \hypertarget{characterizations}{}\subsection*{{Characterizations}}\label{characterizations} Both types of absolute colimits admit pleasant characterizations. \hypertarget{particular_absolute_colimits_2}{}\subsubsection*{{Particular absolute colimits}}\label{particular_absolute_colimits_2} For a particular [[cocone]] $\mu \colon F \to \Delta A$ under a functor $F\colon I\to C$ (all in the Set-enriched world), the following are equivalent: \begin{itemize}% \item $\mu$ is an absolute colimiting cocone. \item $\mu$ is a colimiting cocone which is is preserved by the [[Yoneda embedding]] $C \hookrightarrow [C^{op},Set]$. \item $\mu$ is a colimiting cocone which is preserved by the representable functors $C(F(i),-)\colon C\to Set$ (for all $i\in I$) and $C(A,-)\colon C\to Set$. \item There exists $i_0\in I$ and $d_0\colon A\to F(i_0)$ such that \begin{enumerate}% \item For every $i\in I$, $d_0 \circ \mu_i$ and $1_{F(i)}$ are in the same connected component of the [[comma category]] $(F(i) / F)$. \item $\mu_{i_0} \circ d_0 = 1_{A}$. \end{enumerate} \end{itemize} The equivalence of the first two is basically because the Yoneda embedding is the [[free cocompletion]] of $C$. The third clearly follows from the second. The fourth follows from the third by inspecting exactly what preservation by those representables means in terms of colimits in [[Set]] (as is explained in more detail in the special case of [[absolute coequalizers]]). Finally, it is straightforward to check that the fourth implies that $\mu$ is colimiting, and it is clearly a property preserved by any functor. Note that in particular, the fourth condition implies that $A$ is a [[retract]] of $F(i_0)$. Also, the first half of the fourth condition by itself characterizes absolute [[weak colimits]]. It is also possible to prove directly that the third condition implies the first two, without extracting the fourth condition along the way. Namely, Let $B$ be the full subcategory of $C$ consisting of the objects $F(i)$ and $A$. Then $F$ defines a functor $I\to B$; call it $F'$. Note that $A$ is also the colimit of $F'$ in $B$. Moreover, by the equivalence of the first two conditions, $A$ is an \emph{absolute} colimit of $F'$, since by hypothesis it is preserved by all representable functors out of $B$. Therefore, this colimit is in particular preserved by the inclusion $B\hookrightarrow C$, along with its composite with any functor out of $C$; so $A$ is an absolute colimit of $F$. \hypertarget{CharacterizationsWeightsForAbsoluteColimits}{}\subsubsection*{{Weights for absolute colimits}}\label{CharacterizationsWeightsForAbsoluteColimits} Let $V$ be a B\'e{}nabou [[cosmos]] and $J\colon K ⇸ A$ a $V$-[[profunctor]]. Then the following are equivalent: \begin{itemize}% \item $J$ is a weight for absolute colimits (i.e. $J$-weighted colimits in any $V$-category are preserved by all $V$-functors) \item $J$ has a [[right adjoint]] $J^*$ in the [[bicategory]] $V$-[[Prof]]. \item There is a weight $J^*\colon A ⇸ K$ such that $J$-weighted colimits coincide naturally with $J^*$-weighted limits. \end{itemize} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{particular_absolute_colimits_3}{}\subsubsection*{{Particular absolute colimits}}\label{particular_absolute_colimits_3} Of course, every colimit weighted by a weight for absolute colimits is itself a particular absolute colimit. But it may also happen that a particuclar colimit may be absolute without all colimits of that shape being absolute. For example (in ordinary category theory, with $V=Set$): \begin{itemize}% \item [[split coequalizers]] are absolute, and figure in Beck's [[monadicity theorem]]. \item More generally (of course), [[absolute coequalizers]] are absolute. \item [[absolute pushouts]] appear in [[elegant Reedy categories]]. \end{itemize} We can also say something about non-examples. \begin{itemize}% \item Initial objects (in $Set$-enriched categories) are \emph{never} absolute. If $0$ is an initial object, then it is never preserved by the representable functor $C(0,-)\colon C \to Set$. \item Similarly, coproducts in $Set$-enriched categories are never absolute. \end{itemize} \hypertarget{WExampleseightsForAbsoluteColimits}{}\subsubsection*{{Weights for absolute colimits}}\label{WExampleseightsForAbsoluteColimits} In ordinary $Set$-enriched category theory there are not very many weights for absolute colimits, but we have \begin{itemize}% \item [[split idempotents]]. \end{itemize} In fact, this example is ``universal,'' in that an ordinary category is Cauchy complete iff it has split idempotents, although not every absolute colimit ``is'' the splitting of an idempotent. More precisely, the class of absolute $Set$-limits is the [[saturated class of limits|saturation]] of idempotent-splittings. In [[enriched category theory]] there can be more types of absolute colimits. For instance: \begin{itemize}% \item in categories with [[zero morphisms]] (that is, enriched over [[pointed sets]]), [[initial objects]] are absolute. \item in [[Ab-enriched categories]] (or, more generally, categories enriched over commutative [[monoids]]), finite [[biproducts]] are absolute. Finite biproducts and splitting of idempotents together are ``universal'' absolute colimits for Ab-enrichment. \item in [[SupLat]]-enriched categories, arbitrary small biproducts are absolute, and together with splitting of idempotents these generate all absolute colimits. \item in [[dg-categories]] (or more generally, categories enriched over [[graded set|graded sets]]), \emph{shifts/suspensions} and [[mapping cones]] are absolute. \item in Lawvere [[metric spaces]], limits of Cauchy sequences are absolute. This is the origin of the name ``Cauchy colimit.'' \item in categories [[bicategory-enriched category|enriched]] over the [[bicategory]] (or [[double category]]) of relations in a [[site]], \emph{gluings} are absolute. In this case the enriched categories can roughly be identified with [[separated presheaves]] and the Cauchy-complete ones with [[sheaves]]. \item in categories enriched over [[rational number|rational]] [[vector spaces]], quotients by finite [[group actions]] are absolute. \end{itemize} New kinds of absolute (co)limits also arise in [[higher category theory]]. \begin{itemize}% \item for [[(∞,1)-categories]] (enriched over $\infty$-groupoids), splitting of idempotents is a universal absolute colimit. \item in [[stable (∞,1)-categories]] (which are enriched, in the $(\infty,1)$-categorical sense, over the $(\infty,1)$-category of [[spectra]]), initial objects and [[pushouts]] are absolute, and therefore so are all finite colimits. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ross Street]], \emph{Absolute colimits in enriched categories}, \href{http://www.numdam.org/numdam-bin/fitem?id=CTGDC_1983__24_4_377_0}{Cahiers 1983} \item [[Robert Pare]], \emph{On absolute colimits}, J. Alg. 19 (1971), 80-95. \end{itemize} [[!redirects absolute colimits]] [[!redirects absolute limit]] [[!redirects absolute limits]] [[!redirects Cauchy colimit]] [[!redirects Cauchy colimits]] \end{document}