\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{absolute differential form} \hypertarget{absolute_differential_forms}{}\section*{{Absolute differential forms}}\label{absolute_differential_forms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} It's well known that one can integrate a [[differential form]] on an [[orientation|oriented]] [[submanifold]]. Less well known (but also true), one can integrate a [[differential pseudoform]] on an pseudoriented (transversely oriented) submanifold. But in classical differential geometry, one also sees forms that can be integrated on \emph{unoriented} submanifolds. I call these \emph{absolute} forms. The term `absolute' suggests a lack of additional required structure, in this case some sort of orientation on the domain of integration. It also suggests [[absolute value]], since many of the examples from classical differential geometry involve absolute values. Indeed, we can define the absolute value of a form or a pseudoform to be an absolute form, although not every absolute form arises in this way. The main theorem of absolute forms is that, if $\omega$ is a (pseudo)-$p$-form and $R$ is a (pseudo)-oriented $p$-dimensional submanifold, then \begin{displaymath} {|\int_R \omega|} \leq \int_{|R|} {|\omega|} , \end{displaymath} where ${|\omega|}$ is an absolute $p$-form (the absolute value of $\omega$), $|{R}|$ is simply $R$ with its (pseudo)-orientation ignored, and the absolute value on the left is the ordinary absolute value of scalars. This theorem also applies if we start with an absolute $p$-form $\omega$, (although in that case $R$ starts out unoriented and so is the same as ${|R|}$). If $R$ is a [[de Rham cohomology|de Rham]] chain (a formal [[linear combination]] of appropriately oriented submanifolds), we also take absolute values of the formal coefficients in ${|R|}$. (This operation does not respect the usual notion of equality of chains, but the theorem is true all the same.) \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $X$ be a [[differentiable manifold]] (or similar sort of space), and let $p$ be a [[natural number]] (typically $0 \leq p \leq n$, where $n$ is the [[dimension]] of $X$). Recall that an (exterior differential) \textbf{$p$-[[exterior differential form|form]]} $\omega$ on $X$ is a [[function]] that assigns a [[real number]] (or whatever is the relevant sort of scalar) $\omega_c(v_1,\ldots,v_p)$ to a point $c$ in $X$ and a $p$-[[tuple]] $(v_1,\ldots,v_p)$ of [[tangent vectors]] at $c$, [[multilinear map|multilinearly]] and [[alternating form|alternating]] in the $v_i$. Similarly, a \textbf{$p$-[[pseudoform]]} $\omega$ on $X$ is a function that assigns a scalar $\omega_c^o(v_1,\ldots,v_p)$ to a point $c$ in $X$, a local [[orientation]] $o$ at $c$, and a $p$-tuple $(v_1,\ldots,v_p)$ of tangent vectors at $c$, multilinearly and alternating in the $v_i$ and reversing sign under a reversal of $o$. \begin{defn} \label{}\hypertarget{}{} An \textbf{absolute $p$-form} $\omega$ on $X$ is a function that assigns a scalar $\omega_c(v_1,\ldots,v_p)$ to a point $c$ in $X$ and a $p$-[[tuple]] $(v_1,\ldots,v_p)$ of [[tangent vectors]] at $c$ and that satisfies the following conditions: \begin{enumerate}% \item Fixing $c$, $\omega_c({-})$ shall be [[uniformly continuous map|uniformly continuous]]. \item The $p$-tuple $(v_1,\ldots,v_p)$ shall be [[linearly independent subset|linearly independent]] if $\omega_c(v_1,\ldots,v_p) \ne 0$. Thus, although $\omega_c$ is not linear, we may still call it [[alternating form|alternating]]; however (as a consequence of 3), it is actually [[symmetric function|symmetric]]. \item Fix a $p$-dimensional subspace $S$ of the tangent space at $c$ and an orientation $o$ of $S$. Now given a linearly independent $p$-tuple $(v_1,\ldots,v_p)$ from $S$ (that is a [[basis]] of $S$), let $\omega_c(v_1,\ldots,v_p)_S^o$ be $\pm\omega_c(v_1,\ldots,v_p)$ according to whether the orientation of $S$ induced by the $v_i$ matches $o$, and extend this by continuity to all $p$-tuples from $S$ (which extension must be unique and exists by 1\&2). The resulting function $\omega_c({-})_S^o$ shall be [[multilinear map|multilinear]] (and so also alternating, by 2). \end{enumerate} \end{defn} The multilinearity condition here is rather weaker than for a (pseudo)-form, since it applies only within a $p$-dimensional subspace. Shifting one vector even slightly outside of $S$ loses all connection provided by multilinearity, which is why we need a continuity condition; continuity holds for (pseudo)-forms automatically. An absolute $p$-form $\omega$ is \textbf{[[continuous map|continuous]]} if it is jointly continuous in all of its data ($c$ as well as the $v_i$). Since the domain of the function $\omega$ is a manifold (a [[vector bundle]] over $X$, although $\omega$ is not a map of vector bundles), we can even discuss [[differentiable map|differentiability]], [[smooth map|smoothness]], and even [[analytic map|analyticity]] of $\omega$ when $X$ has the relevant structure. An absolute $0$-form is the same thing as a $0$-form. An absolute $n$-form on an $n$-dimensional manifold $X$ is essentially the same thing as an $n$-pseudoform; with the notation from condition 3, the only possibility for $S$ is the entire tangent space $T_c{X}$, and we have \begin{displaymath} \tilde\omega_c^o(v_1,\ldots,v_n) = \omega_c(v_1,\ldots,v_n)_{T_c{X}}^o \end{displaymath} to relate the $n$-pseudoform $\tilde{\omega}$ to the absolute $n$-form $\omega$. Finally, the only absolute $p$-form for $p \gt n$ is $0$. At a point $c$, an absolute $p$-form $\omega$ is: \begin{itemize}% \item \textbf{indefinite} if $\omega_c(v_1,\ldots,v_p) \gt 0$ for some (necessarily [[linearly independent subset|linearly independent]]) $p$-tuple of vectors and $\omega_c(v_1,\ldots,v_p) \lt 0$ for some $p$-tuple, \item \textbf{semidefinite} if not indefinite, \item \textbf{definite} (and hence semidefinite) if $\omega_c(v_1,\ldots,v_p) \ne 0$ for every independent $p$-tuple of vectors at $c$, \item \textbf{positive} (and hence semidefinite) if $\omega_c(v_1,\ldots,v_p) \geq 0$ for every $p$-tuple of vectors (it is enough when they are independent), \item \textbf{negative} (and hence semidefinite) if $\omega_c(v_1,\ldots,v_p) \leq 0$ for every (independent) $p$-tuple of vectors. \end{itemize} All these are at a point $c$; $\omega$ satisfies the condition tout court if it holds for all $c$. Given an absolute $p$-form $\omega$, its \textbf{[[absolute value]]} ${|\omega|}$ is a positive semidefinite absolute $p$-form: \begin{displaymath} {|\omega|}_c(v_1,\ldots,v_p) \coloneqq {|\omega_c(v_1,\ldots,v_p)|} . \end{displaymath} If we start with a $p$-form $\omega$, then the same definition defines a positive absolute $p$-form ${|\omega|}$. If we start with a $p$-pseudoform $\omega$, then essentially the same definition still works; we use either orientation to evaluate $\omega$ with the same result. Note that ${|\omega|}$ is continuous if $\omega$ is. However, we may \emph{not} conclude that ${|\omega|}$ is differentiable just because $\omega$ is differentiable (or even analytic). On the other hand, ${|\omega|}$ inherits differentiability properties from $\omega$ wherever $\omega \ne 0$. (Even then, however, we cannot inherit analyticity, except in $1$ dimension.) Given two absolute $p$-forms $\omega$ and $\eta$, their \textbf{sum} $\omega + \eta$ is an absolute $p$-form: \begin{displaymath} (\omega + \eta)_c(v_1,\ldots,v_p) \coloneqq \omega_c(v_1,\ldots,v_p) + \eta_c(v_1,\ldots,v_p) . \end{displaymath} Given an absolute $p$-form $\omega$ and a scalar field $f$, their \textbf{product} $f \omega$ is an absolute $p$-form: \begin{displaymath} (f \omega)_c(v_1,\ldots,v_p) \coloneqq f(c) \omega_c(v_1,\ldots,v_p) . \end{displaymath} In this way, the space of absolute $p$-forms is a [[module]] over the [[associative algebra|algebra]] of scalar fields and the space of [[sections]] of a [[vector bundle]]. For now, we decline to define products of absolute forms of aribtrary rank. Given an absolute $p$-form $\omega$ on $X$, a manifold $U$, and a [[continuously differentiable map]] $R\colon U \to X$, the \textbf{pullback} $R^*\omega$ is an absolute $p$-form on $U$: \begin{displaymath} (R^*\omega)_c(v_1,\ldots,v_p) \coloneqq \omega_{R(c)}(R_*v_1,\ldots,R_*v_p) . \end{displaymath} Here, $R_*v_i$ is the [[pushforward]] of $v_i$ under $R$. Note that $R^*\omega$ is continuous if $\omega$ is; we can also pull back differentiability and analyticity properties that $\omega$ and $R$ both have. Given a continuous absolute $p$-form $\omega$ on $X$, a $p$-dimensional manifold $U$, and a continuously differentiable map $R\colon U \to X$, the \textbf{integral} $\int_R \omega$ is a scalar: \begin{displaymath} \int_R \omega \coloneqq \int_U R^*\omega . \end{displaymath} On the right-hand side, $R^*\omega$ is a continuous absolute $p$-form on $U$, but since $U$ is $p$-dimensional, this is essentially the same as a continuous $p$-pseudoform on $U$, and we already know how to integrate this (see [[integration of differential forms]]). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Examples of absolute forms from classical differential geometry include: \begin{itemize}% \item Absolute $0$-forms are the same as ordinary $0$-forms. \item Absolute $n$-forms on an $n$-[[dimensional]] manifold are the same as $n$-pseudoforms (and hence the same as [[absolutely continuous measure|absolutely continuous]] [[Radon measures]]). \item In [[complex analysis]], ${|\mathrm{d}z|}$ is an absolute $1$-form sometimes used in [[contour integration]]. This literally is the absolute value of the differential of the identity map $z$. \item More generally, the [[arclength]] element $\mathrm{d}s = {\|\mathrm{d}\mathbf{x}\|}$ on a [[Riemannian manifold]] is an absolute $1$-form. Neither $\mathrm{d}s$ nor (in general) $\mathrm{d}\mathbf{x}$ is actually the differential of anything, but $\mathrm{d}\mathbf{x}$ is the canonical [[tangent vector|vector]]-valued $1$-form (which, on an [[affine space]], really is the differential of the [[identity map]] $\mathbf{x}$), and we really can use the metric to take the norm of such a form to get an absolute $1$-form. \item Similarly, the [[surface area]] element $\mathrm{d}S$ on a Riemannian manifold is an absolute $2$-form, and we can continue into higher dimensions (although the classical [[volume element]] $\mathrm{d}V$ in $\mathbb{R}^3$ is already covered as a $3$-pseudoform). In principle, we ought to be able to write down expression for $\mathrm{d}S$ etc in terms of $\mathrm{d}s$, although so far the only thing that I know how to do is $\mathrm{d}S = {\|{\mathrm{d}\mathbf{x} \hat\times \mathrm{d}\mathbf{x}}\|} / 2$, where $\hat\times$ indicates a wedge product of vector-valued forms whose vectors are multiplied by the [[cross product]]. (This can be generalized to any finite-dimensional area in any finite-dimensional Riemannian manifold; in particular, $\mathrm{d}V = {|{\mathrm{d}\mathbf{x} \hat\cdot \mathrm{d}\mathbf{x} \hat\times \mathrm{d}\mathbf{x}}|} / 6$.) \end{itemize} \begin{remark} \label{}\hypertarget{}{} \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item exterior [[differential forms]] \item [[cogerm differential forms]] are a more general concept including both. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Near the end of a Usenet post from 2002, we see a definition of $\int_R {|\omega|}$ for $\omega$ a (pseudo)-$p$-form and $R$ a $p$-dimensional submanifold, but without a broader context for ${|\omega|}$ itself: \begin{itemize}% \item [[Toby Bartels]] and Ralph Hartley; \href{https://groups.google.com/group/sci.physics.research/msg/424da828e75b6b90?dmode=source}{Densitized Pseudo Twisted Forms} \end{itemize} Apparently absolute $p$-forms (at least if continuous) are the same as even $p$-[[densities]] as defined by Gelfand; see this MathOverflow answer: \begin{itemize}% \item Juan Carlos \'A{}lvarez Paiva; answer to \href{http://mathoverflow.net/questions/90455/why-do-i-need-densities-in-order-to-integrate-on-a-non-orientable-manifold/90714#90714}{Why do I need densities in order to integrate on a non-orientable manifold?}. \end{itemize} [[!redirects absolute differential form]] [[!redirects absolute differential forms]] [[!redirects absolute form]] [[!redirects absolute forms]] [[!redirects differential absolute form]] [[!redirects differential absolute forms]] \end{document}