\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{absolute value} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{terminology}{Terminology}\dotfill \pageref*{terminology} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{trivial_absolute_value}{Trivial absolute value}\dotfill \pageref*{trivial_absolute_value} \linebreak \noindent\hyperlink{OnTheRealAndComplexNumbers}{On the real and complex numbers}\dotfill \pageref*{OnTheRealAndComplexNumbers} \linebreak \noindent\hyperlink{on_the_rational_numbers}{On the rational numbers}\dotfill \pageref*{on_the_rational_numbers} \linebreak \noindent\hyperlink{on_laurent_power_series}{On Laurent power series}\dotfill \pageref*{on_laurent_power_series} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{terminology}{}\subsection*{{Terminology}}\label{terminology} In [[field]] theory, what we call an `absolute value' here is often called a `valuation'. However, there is also a more general notion of [[valuation]] used in field theory, which is what we call `valuation'. The notion of absolute value is also used in [[functional analysis]], where it may be called a `multiplicative norm' (rather than merely submultiplicative, as norms on [[Banach algebras]] are required to be). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $k$ a [[rig]] (typically either a [[field]] or at least an [[integral domain]], or else an [[associative algebra]] over such), an \textbf{absolute value} on $k$ is a (non-trivial) multiplicative [[seminorm]], or equivalently a finite real-valued [[valuation]]. This means it is a [[function]] \begin{displaymath} {\vert {-} \vert}\colon k \to \mathbb{R} \end{displaymath} to the [[real numbers]] such that for all $x, y \in k$ \begin{enumerate}% \item ${\vert x \vert} \geq 0$; \item ${\vert x \vert} = 0$ precisely if $x = 0$; \item ${\vert x \cdot y \vert} = {\vert x \vert} {\vert y \vert}$; \item ${\vert x + y \vert} \leq {\vert x \vert} + {\vert y \vert}$ (the [[triangle inequality]]). \end{enumerate} If the last triangle inequality is strengthened to \begin{itemize}% \item ${\vert x + y \vert} \leq max({\vert x \vert}, {\vert y \vert})$ \end{itemize} then ${\vert {-} \vert}$ is called an [[ultrametric]] or \textbf{non-archimedean} absolute value, since then for any $x, y \in k$ with $\vert x \vert \lt \vert y \vert$ then for all natural numbers $n$, $\vert n x \vert \leq \vert x \vert \lt \vert y \vert$. If the opposite holds, that whenever $\vert x \vert \lt \vert y \vert$ (and $x\neq 0$) there exists a natural number $n$ with $\vert n x \vert \gt \vert y \vert$, then it is called \textbf{archimedean}. Two absolute values ${\vert {-} \vert}_1$ and ${\vert {-} \vert}_2$ are called \emph{equivalent} if for all $x \in k$ \begin{displaymath} ({\vert x \vert}_1 \lt 1) \Leftrightarrow ({\vert x \vert}_2 \lt 1) \,. \end{displaymath} An [[equivalence class]] of absolute values is also called a \textbf{[[place]]}. A [[field]] equipped with an absolute value which is a [[complete metric space]] with respect to the corresponding [[metric]] is called a [[complete field]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{trivial_absolute_value}{}\subsubsection*{{Trivial absolute value}}\label{trivial_absolute_value} Every field admits the trivial absolute value ${\vert {-} \vert}_0$ defined by \begin{displaymath} {\vert x \vert}_0 = \left\{ \itexarray{ 0 & if\; x = 0 \\ 1 & otherwise } \right. \,. \end{displaymath} This is non-archimedean. \hypertarget{OnTheRealAndComplexNumbers}{}\subsubsection*{{On the real and complex numbers}}\label{OnTheRealAndComplexNumbers} The standard absolute value ${\vert {-} \vert_\infty}$ on the [[real numbers]] is \begin{displaymath} {\vert x \vert_\infty} = \sqrt{x^2} = \left\{ \itexarray{ x & if\; x \geq 0 \\ - x & otherwise } \right. \,. \end{displaymath} The standard absolute value on the [[complex numbers]] is \begin{displaymath} {\vert x + i y \vert_\infty} = \sqrt{x^2 + y^2} \,. \end{displaymath} These standard absolute values are archimedean, and with respect to these standard absolute values, both $\mathbb{R}$ and $\mathbb{C}$ are [[complete field|complete]] and hence are complete [[archimedean valued fields]]. Notice that $\mathbb{R}$ is in addition an [[ordered field]] and as such also an [[archimedean field]]. Similar norms exist on the [[quaternions]] and [[octonions]], showing that absolute values can be of interest on noncommutative and even nonassociative [[division rings]]. \hypertarget{on_the_rational_numbers}{}\subsubsection*{{On the rational numbers}}\label{on_the_rational_numbers} The standard absolute value \hyperlink{OnTheRealAndComplexNumbers}{above} restricts to the standard absolute value on the [[rational numbers]] \begin{displaymath} {\vert {-} \vert_\infty}\colon \mathbb{Q} \to \mathbb{R} \,. \end{displaymath} Moreover, for any [[prime number]] $p$ and [[positive number]] $\epsilon \lt 1$, there is an absolute value ${\vert {-} \vert_{p,\epsilon}}$ on $\mathbb{Q}$ defined by \begin{displaymath} \left\vert \frac{k}{l} p^n\right\vert_{p,\epsilon} = \epsilon^n \end{displaymath} whenever $n$ is an [[integer]] and $k$ and $l$ are nonzero [[integers]] not divisible by $p$ (and ${\vert 0 \vert_{p,\epsilon}} = 0$). These are called the \textbf{$p$-adic absolute values}. Given $p$, they are all equivalent (the open unit ball consists of all rational numbers whose denominator in lowest terms is not divisible by $p$), so there is a unique \textbf{$p$-adic [[place]]}. For most purposes, only the place matters, and one may write simply $|q|_p$; however, if one wants a specific absolute value, then the usual choice is to use $\epsilon = 1/p$ (so that ${|p^n|_p} = p^{-n}$ whenever $n$ is an integer). The $p$-adic absolute value is non-archimedean. The [[complete field|completion]] $\mathbb{Q}_p$ of $\mathbb{Q}$ under this absolute value is called the field of [[p-adic numbers]], which is therefore a [[non-archimedean field]]. [[Ostrowski's theorem]] says that these examples exhaust the non-trivial absolute values on the [[rational numbers]]. Therefore the [[real numbers]] and the [[p-adic numbers]] are the only possible field completions of $\mathbb{Q}$. \hypertarget{on_laurent_power_series}{}\subsubsection*{{On Laurent power series}}\label{on_laurent_power_series} The field of [[Laurent series]] $k[ [ T] ]$ over a [[field]] $k$ is a [[complete field]] with respect to the absolute value that sends a series to $\epsilon^n$ for a fixed $0 \lt \epsilon \lt 1$ and with $n$ the lowest integer such that the $n$th coefficient of the series is not $0$. \hypertarget{references}{}\subsection*{{References}}\label{references} Section 1.5, 1.6 of \begin{itemize}% \item [[Siegfried Bosch]], [[Ulrich Güntzer]], [[Reinhold Remmert]], \emph{[[Non-Archimedean Analysis]] -- A systematic approach to rigid analytic geometry}, 1984 (\href{http://math.arizona.edu/~cais/scans/BGR-Non_Archimedean_Analysis.pdf}{pdf}) \end{itemize} [[!redirects absolute value]] [[!redirects absolute values]] [[!redirects archimedean absolute value]] [[!redirects Archimedean absolute value]] [[!redirects archimedean absolute values]] [[!redirects Archimedean absolute values]] [[!redirects archimedean]] [[!redirects non-archimedean]] [[!redirects non-archimedean valuation]] [[!redirects non-archimedean valuations]] \end{document}