\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{action functional} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{variational_calculus}{}\paragraph*{{Variational calculus}}\label{variational_calculus} [[!include variational calculus - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{LocalActionFunctional}{Local action functionals (traditional theory)}\dotfill \pageref*{LocalActionFunctional} \linebreak \noindent\hyperlink{ExtendedLocalInGaugeTheory}{Extended local action functionals in (higher) gauge theory}\dotfill \pageref*{ExtendedLocalInGaugeTheory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[physics]] the [[dynamics]] of a [[physical system]] may be encoded by a [[nonlinear functional]] -- called the \textbf{action functional} -- on its [[configuration space]]: \begin{itemize}% \item in [[classical mechanics]] and [[classical field theory]] -- by the \textbf{action principle} or \textbf{[[principle of least action]]} -- the extrema of the action functional -- obtained by [[variational calculus]] and given by [[Euler-Lagrange equation]]s -- encode the physically observable configurations ; \item in [[quantum mechanics]] and [[quantum field theory]] the evolution of the [[quantum state]]s is encoded by the integral -- the [[path integral]] -- of the exponentiated action functional over the space of field configurations. \end{itemize} For emphasis the description of dynamics by action functionals is called the \textbf{Lagrangean} approach. Another formulation of dynamics in physics that does not involve an action functional explicitly is [[Hamiltonian mechanics]] on [[phase space]]. At least in certain classes of cases the relation and equivalence of both approaches is understood. Generally the formulation of [[quantum field theory]] in terms of action functionals suffers from a lack of precise understanding of what the [[path integral]] over the action functional really means. $\backslash$begin\{imagefromfile\} ``file\_name'': ``action\_functional\_on\_a\_napkin.jpg'', ``float'': ``left'', ``margin'': \{ ``top'': 0, ``right'': 10, ``bottom'': 10, ``left'': 0, ``unit'': ``px'' \}, ``alt'': ``Action functional on a napkin'', ``caption'': ``Taken from A Zee, Fearful Symmetry'' $\backslash$end\{imagefromfile\} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathbf{H}$ be the ambient [[(∞,1)-topos]] with a [[natural numbers object]] and equipped with an additive [[continuum]] [[line object]] $\mathbb{A}^1$ (see there). Let $C \in \mathbf{H}$ be the [[configuration space]] of a physical system. Then an \textbf{action functional} is a morphism \begin{displaymath} \exp(\tfrac{i}{\hbar} S(-)) : C \to \mathbb{A}^1 / \mathbb{Z} \, \end{displaymath} (here $\hbar$ refers to [[Planck's constant]]). If $\mathbf{H}$ is a [[cohesive (∞,1)-topos]] then there is an of the action functional to a morphism \begin{displaymath} \mathbf{d} \exp(\tfrac{i}{\hbar} S(-)) : C \to \mathbf{\flat}_{dR}\mathbb{A}^1/\mathbb{Z} \,. \end{displaymath} The [[equation]] \begin{displaymath} \mathbf{d} \exp(\tfrac{i}{\hbar} S(-)) = 0 \end{displaymath} is the [[Euler-Lagrange equation]] of the system. It characterizes the [[critical locus]] of $S$ is the [[covariant phase space]] inside the configuration space: the space of classically realized trajectories/histories of the system. If $\mathbf{H}$ models [[derived geometry]] then this critical locus is presented by a [[BRST-BV complex]]. \hypertarget{LocalActionFunctional}{}\subsubsection*{{Local action functionals (traditional theory)}}\label{LocalActionFunctional} An action functional is called \textbf{local} if it arises from integration of a [[Lagrangian]]. In traditional theory this is interpreted as follows: an action functional $S : C \to \mathbb{A}^1$ is called local if \begin{itemize}% \item the [[configuration space]] $C$ is the space $C = \Gamma_X(E)$ of [[section]]s of a [[fiber bundle]] $E \to X$ over some parameter space ([[spacetime]] $X$); \item there is a [[Lagrangian]] density $J_\infty(E) \to \Omega^{\dim X}(X)$ on the [[jet bundle]] of $E$; \item on a section/field configuration $\phi : X \to E$ the action $S$ takes the value \begin{displaymath} S(\phi) = \int_X L(j_\infty(\phi)) \,, \end{displaymath} where $j_\infty(\phi) = (\phi, \partial_i \phi, \cdots)$ is the jet-prolongation of $\phi$ (the collection of all its higher partial derivatives). \end{itemize} Consider action functional for on a configuration space of [[smooth function]]s from the line to a [[smooth manifold]] $X$. We can consider \begin{enumerate}% \item $S(q) = \int_a^b L(q,\dot{q}) \,\mathrm{d}t$, where $q$ is a path through configuration space, on the time interval $[a,b]$, with derivative $\dot{q} = \mathrm{d}q/\mathrm{d}t$. When minimising the action, we fix the values of $q(a)$ and $q(b)$. \item $L(q,\dot{q}) = \int_{S} \mathcal{L}(q,\dot{q}) \,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$, where now $q$ is a configuration of fields on $S$, which is a region of space. We fix boundary conditions on the boundary of $S$ (typically that $q$ and $\dot{q}$ go to zero if $S$ is all of space). \item $S(q) = \int_{R} \mathcal{L}(q,\dot{q}) \,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t$, where now $q$ is a configuration of fields on $R$, which a region of spacetime, with time derivative $\dot{q} = \partial{q}/\partial{t}$. We fix boundary conditions on the boundary of $R$. \end{enumerate} The formulation of (3) above is still not manifestly coordinate independent. However, $\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}t$ is simply the [[volume form]] on spacetime and $\dot{q}$ is merely one choice of coordinate on [[configuration space|state space]] and could just as easily be replaced by a derivative with respect to any timelike coordinate on spacetime (or drop coordinates altogether). \hypertarget{ExtendedLocalInGaugeTheory}{}\subsubsection*{{Extended local action functionals in (higher) gauge theory}}\label{ExtendedLocalInGaugeTheory} For [[gauge theories]] and [[higher gauge theories]] the configuration spaceds of the physical system are in general not plain [[manifolds]] or similar, but are [[orbifolds]] or more generally [[smooth groupoids]], [[smooth ∞-groupoids]]. (An exposition of and introduction to much of the following is at \emph{[[geometry of physics]]}.) For instance for $G$ a [[Lie group]] and $\mathbf{B}G_{conn}$ the smooth [[moduli stack]] of $G$-[[principal connections]] (see at [[connection on a bundle]]), then the [[smooth groupoid]] of $G$-[[gauge field]] configurations is the [[internal hom]]/[[mapping stack]] $[\Sigma, \mathbf{B}G_{conn}] \in$[[Smooth∞Grpd]] (or some concretification thereof, see at \emph{\href{geometry%20of%20physics#DifferentialModuli}{geometric of physics -- differential moduli}}: this is the [[smooth groupoid]] whose [[objects]] are $G$-[[gauge field]]-configurations on $\Sigma$ ([[connection on a bundle|connections]] on $G$-[[principal bundles]] over $\Sigma$), and whose [[morphisms]] are [[gauge transformations]] between these. The [[infinitesimal space|infinitesimal]] approximation to this [[smooth ∞-groupoid]], its \emph{[[∞-Lie algebroid]]} is the (off-shell) [[BRST complex]] of the theory. The tangent to the $n$-fold [[higher gauge transformations]] becomes the $n$-fold \emph{ghosts} in the BRST complex. More generall $G$ here can by any [[smooth ∞-group]], such as the [[circle n-group]] $\mathbf{B}^{n-1}U(1)$ or the [[String 2-group]] or the [[Fivebrane 6-group]], and so on, in which case $[\Sigma, \mathbf{B}G_{conn}]$ is the [[smooth ∞-groupoid]] of [[higher gauge theory|higher gauge field]], [[gauge transformations]] between these, [[higher gauge transformations]] between those, and so on. Notice that this means in particular that in [[higher geometry]] a [[gauge theory]] is a [[sigma-model]] [[quantum field theory]]: one whose [[target space]] is not just a plain [[manifold]] but is a [[moduli stack]] of gauge field configurations. A [[gauge invariance|gauge invariant]] action functional is then a morphism of [[smooth ∞-groupoids]] \begin{displaymath} \exp( i S(-)) \colon [\Sigma, \mathbf{B}G_{conn}] \to U(1) \,. \end{displaymath} This is of particular interst, again, if it is \emph{local}. In fact, in this context now we can also ask that it is ``extended'' in the sense of [[extended topological quantum field theory]]: that we have an action functional not only in top dimension, being a function, but also in codimension 1, being a [[prequantum bundle]], and in higher codimension, being a [[prequantum n-bundle]]. This is notably the case for all (higher) gauge theoris of [[schreiber:infinity-Chern-Simons theory]] type, such as ordinary [[Chern-Simons theory]] and such as ordinary [[Dijkgraaf-Witten theory]], as well as its higher generalizations. In these cases the action functional $\exp(i S(-)) \colon [\Sigma, \mathbf{B}G_{conn}]$ arises itself from [[transgression]] of an [[extended Lagrangian]] that is defined on the universal [[moduli stack]] of gauge field configurations $\mathbf{B}G_{conn}$ itself, namely from a [[universal characteristic class]] in higher nonabelian [[differential cohomology]] of the form \begin{displaymath} \mathbf{L} \colon \mathbf{B}G_{conn} \to \mathbf{B}^n U(1)_{conn} \,. \end{displaymath} Here $\mathbf{B}^n U(1)_{conn}$ is the universal [[smooth infinity-groupoid|smooth]] [[moduli infinity-stack]] for [[circle n-bundles with connection]]. Such a morphism of moduli stacks locally takes a [[connection on a bundle|connection]] [[differential form]] $A$ to a [[Chern-Simons form]] $CS(A)$, but globally it sends the underlying [[principal bundle]] to a [[circle n-group|circle (n-1)-group]] [[principal ∞-bundle]] and accordingly acts globally on the connection. This is hence a fully local [[Lagrangian]]: an \emph{[[extended Lagrangian]]}. Alternatively, one may think of this whole morphism as modulating a [[prequantum circle n-bundle]] on the universal moduli stack $\mathbf{B}G_{conn}$ of [[gauge fields]] itself. For instance for ordinary [[Chern-Simons theory]] here $n = 3$ $G$ is a [[semisimple Lie group]] and $\mathbf{L}$ is a smooth and differential refinement of the [[first Pontryagin class]]/[[second Chern class]], or of an integral multiple of that (the ``level'' of the theory). In this case $\mathbf{L}$ may also be thought of as modulating the universal [[Chern-Simons circle 3-bundle]]. If instead $G$ is a [[discrete group]] then $\mathbf{L}$ is a [[cocycle]] in the $U(1)$-[[group cohomology]] and this is the [[extended Lagrangian]] of [[Dijkgraaf-Witten theory]]. This [[extended Lagrangian]] becomes an extended action functional after [[transgression]]: the operaton of [[fiber integration in ordinary differential cohomology]] refines to a morphism of moduli stacks of the form \begin{displaymath} \exp(2 \pi i \int_{\Sigma_k} (-)) \colon [\Sigma_k, \mathbf{B}^n U(1)_{\mathrm{conn}} ] \to \mathbf{B}^{n-k}U(1)_{conn} \,, \end{displaymath} where $\Sigma$ is an [[orientation|oriented]] [[closed manifold]] of [[dimension]] $k$. This morphism locally simply takes a [[differential n-form]] to its ordinary [[integration of differential forms]] over $\Sigma_k$, but globally it takes the correct [[higher holonomy]] of [[circle n-bundles with connection]]. Combining this with an extended [[schreiber:∞-Chern-Simons theory]] [[Lagrangian]] $\mathbf{L} \colon \mathbf{B}G_{conn} \to \mathbf{B}^n U(1)_{conn}$ as above yields for each dimension $k$ a [[prequantum circle n-bundle]] on the space of gauge field configurations over $\Sigma_k$, by forming the [[transgression]] composite \begin{displaymath} \exp(i S(-)) \coloneqq \exp(2 \pi i \int_{\Sigma_k} [\Sigma_k, \mathbf{L}]) \;\; \colon \;\; [\Sigma_k, \mathbf{B}G_{conn}] \stackrel{[\Sigma_k, \mathbf{L}]}{\to} [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \stackrel{\exp(2 \pi i \int_{\Sigma_k}(-))}{\to} \mathbf{B}^{n-k}U(1)_{conn} \,. \end{displaymath} This morphism locally takes the local [[differential form]] incarnation $A$ of a [[connection on an ∞-bundle]] to the exponentiation of the [[integration of differential forms]] $\int_\Sigma CS(A)$ of some higher [[Chern-Simons form]], but globally it computes the correct [[higher holonomy]] of the higher [[circle n-bundle with connection]] over the universal moduli stack of fields, as modulated by the extended [[Lagrangian]] $\mathbf{L}$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For [[spacetime]] [[field theory]]: \begin{itemize}% \item [[Einstein-Hilbert action]] \begin{itemize}% \item [[Einstein-Maxwell theory]] \item [[Einstein-Yang-Mills theory]] \item [[Einstein-Yang-Mills-Dirac theory]] \item [[Einstein-Maxwell-Yang-Mills-Dirac-Higgs theory]] \end{itemize} \end{itemize} For [[branes]]: \begin{itemize}% \item [[Nambu-Goto action]] \item [[Dirac-Born-Infeld action]] \item [[Perry-Schwarz action]] \item A large class of examples of action functionals arises in [[schreiber:∞-Chern-Simons theory]]. See there for details. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include action (physics) - table]] \begin{itemize}% \item [[principle of extremal action]], [[Euler-Lagrange equations]] \item [[path integral]] [[quantization]] \item [[effective action functional]], [[background field formalism]] \item [[parent action functional]] \end{itemize} [[!include extended prequantum field theory - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes with more details are in the section \emph{\href{geometry+of+physics#LagrangiansAndActionFunctionals}{Lagrangians and Action functionals}} of \begin{itemize}% \item \emph{[[geometry of physics]]} . \end{itemize} Discussion of extended higher local action functional for (higher) gauge theories of generalized [[schreiber:∞-Chern-Simons theory]] type are discussed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Hisham Sati]], \emph{[[schreiber:Extended higher cup-product Chern-Simons theories]]} \end{itemize} The extended local action functionals for ordinary 3d [[Chern-Simons theory]]/[[Dijkgraaf-Witten theory]] and for 7d [[String 2-group]] Chern-Simons theory are constructed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]]} \end{itemize} and discussed further in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Hisham Sati]], \emph{[[schreiber:7d Chern-Simons theory and the 5-brane]]} \end{itemize} A comprehensive discussion in a general context of higher differential geometry is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} [[!redirects action functional]] [[!redirects action functionals]] [[!redirects action functinal]] [[!redirects local action functional]] [[!redirects local action functionals]] \end{document}