\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{action groupoid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_category_theory}{In category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{in_1category_theory}{In (∞,1)-category theory}\dotfill \pageref*{in_1category_theory} \linebreak \noindent\hyperlink{interpretations}{Interpretations}\dotfill \pageref*{interpretations} \linebreak \noindent\hyperlink{as_a_pseudo_colimit}{As a pseudo colimit}\dotfill \pageref*{as_a_pseudo_colimit} \linebreak \noindent\hyperlink{as_associated_universal_bundle}{As associated universal bundle}\dotfill \pageref*{as_associated_universal_bundle} \linebreak \noindent\hyperlink{as_a_stack}{As a stack}\dotfill \pageref*{as_a_stack} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_representation_theory}{Relation to representation theory}\dotfill \pageref*{relation_to_representation_theory} \linebreak \noindent\hyperlink{ActionooGrpd}{Action $\infty$-groupoid}\dotfill \pageref*{ActionooGrpd} \linebreak \noindent\hyperlink{some_comment}{Some comment}\dotfill \pageref*{some_comment} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given an [[action]] $\rho$ of a [[group]] $G$ on a [[set]] $S$, the action groupoid $S//G$ is a bit like the quotient set $S/G$ (the set of $G$-orbits). But, instead of taking elements of $S$ in the same $G$-orbit as being [[equality|equal]] in $S/G$, in the action groupoid they are just [[isomorphism|isomorphic]]. We may think of the action groupoid as a [[homological resolution|resolution]] of the usual quotient. When the action of $G$ on $S$ fails to be free, the action groupoid is generally better-behaved than the quotient set. The action groupoid also goes by other names, including `[[weak quotient]]'. It is a special case of a `[[pseudo colimit]]', as explained below. It is also called a ``[[semidirect product]]'' and then written $S \rtimes G$. The advantage of this is that it accords with the generalisation to the action of a group $G$ on a groupoid $S$, which is relevant to orbit space considerations, since if $G$ acts on a space $X$ it also acts on the fundamental groupoid of $X$; this is fully developed in ``Topology and Groupoids'', Chapter 11. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_category_theory}{}\subsubsection*{{In category theory}}\label{in_category_theory} Given an [[action]] $\rho : S \times G \to S$ of a group $G$ on the set $S$, the \emph{action groupoid} $S//G$ (or, more precisely, $S//_\rho G$) is the [[groupoid]] for which: \begin{itemize}% \item an object is an element of $S$ \item a morphism from $s \in S$ to $s' \in S$ is a group element $g \in G$ with $g s = s'$. So, a general morphism is a pair $(g,s) : s \to g s$. \item The composite of $(g,s) : s \to g s = s'$ and $(g',s'): s' \to g's'$ is $(g' g, s) : s \to g' g s$. \end{itemize} Equivalently, we may define the \emph{action groupoid} $S//G$ to be the groupoid \begin{displaymath} \itexarray{ && S \times G \\ & {}^{s := p_1}\swarrow && \searrow^{t = \rho} \\ S &&&& S } \end{displaymath} with composition \begin{displaymath} (S \times G) \times_{t,s} (S \times G) \simeq S \times G \times G \to S \times G \end{displaymath} given by the product in $G$. We can denote the morphisms in $S//G$ by \begin{displaymath} S//G:=\{s\stackrel{g}{\to} \rho(s,g) | s\in S, g\in G\}. \end{displaymath} \hypertarget{in_1category_theory}{}\subsubsection*{{In (∞,1)-category theory}}\label{in_1category_theory} \begin{defn} \label{ActionInfinityGroupoid}\hypertarget{ActionInfinityGroupoid}{} Let $C$ be an ($\infty$,1)-category, let $G\in Grpd(C)$ be a groupoid object in $C$, let $X\in C$ be an object. Then the [[simplicial object]] \begin{displaymath} \itexarray{ \cdots & \underoverset{\to}{\to}{\to} & X\times_{G_0}G\times_p G & \rightrightarrows & X\times_{G_0}G & \to & X } \end{displaymath} such that the degree-wise projections give a simplicial map \begin{displaymath} \itexarray{ \cdots & \underoverset{\to}{\to}{\to} & X\times_{G_0}G\times_p G & \rightrightarrows & X\times_{G_0}G & \to & X \\ && \downarrow && \downarrow && \downarrow^a \\ \cdots & \underoverset{\to}{\to}{\to} & G\times_p G & \rightrightarrows & G & \xrightarrow{p} & G_0 } \end{displaymath} is called an \emph{action of} $G$ \emph{on} $X$. The colimit $colim\; X\times_{G_0}^{\times_\bullet}$ is called \emph{action $\infty$-groupoid of} $G$ \emph{on} $X$. \end{defn} \hypertarget{interpretations}{}\subsection*{{Interpretations}}\label{interpretations} On top of the above explicit definitions, there are several useful ways to think of action groupoids. Recall that the action $\rho$ is equivalently thought of as a functor \begin{displaymath} \rho : \mathbf{B}G \to Sets \end{displaymath} from the [[group]] $G$ regarded as a one-object groupoid, denoted $\mathbf{B}G$. This functor sends the single object of $\mathbf{B}G$ to the set $S$. \hypertarget{as_a_pseudo_colimit}{}\subsubsection*{{As a pseudo colimit}}\label{as_a_pseudo_colimit} $S//G$ is the [[2-limit|2-colimit]] of $\rho$, i.e., the [[category of elements]] of $\rho$. \begin{displaymath} S//G \simeq colim_{\mathbf{B}G} \rho \,. \end{displaymath} The universal cocone consists of cells of the form \begin{displaymath} \itexarray{ S &&\stackrel{\rho(g)}{\to}&& S \\ & \searrow &\stackrel{\simeq}{\Leftarrow}& \swarrow \\ && S//G } \,, \end{displaymath} where the 2-morphism is uniquely specified and in components given by $s \mapsto (s \stackrel{g}{\to} \rho(s,g))$. \hypertarget{as_associated_universal_bundle}{}\subsubsection*{{As associated universal bundle}}\label{as_associated_universal_bundle} Let $Set_*$ be the category of pointed sets and $Sets_* \to Sets$ be the canonical forgetful functor. We can think of this as the ``universal $Set$-bundle''. Then $S//G$ is the pullback \begin{displaymath} \itexarray{ S//G &\to& Sets_* \\ \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{\rho}{\to}& Sets } \,. \end{displaymath} One place where we discussed this is the comment \href{http://golem.ph.utexas.edu/category/2007/08/on_hess_and_lack_on_bundles_of_1.html#c019094}{It was David Roberts who apparently first noticed\ldots{}}. Notice also that an action of $G$ on the set $S$ gives rise to a morphism $p: S \rtimes G \to G$ which has the property of unique path lifting, or in other words is a discrete opfibration. It is also called a covering morphism of groupoids, and models nicely covering maps of spaces. Higgins used this idea to lift presentations of a group $G$ to presentations of the covering morphism of $G$ derived from the action of $G$ on cosets, and so to apply graph theory to obtain old and new subgroup theorems in group theory. \hypertarget{as_a_stack}{}\subsubsection*{{As a stack}}\label{as_a_stack} In the case where the action is [[internalization|internal]] to sets with structure, such as internal to [[Diff]] one wants to realize the action groupoid as a [[Lie groupoid]]. That Lie groupoid in turn may be taken to present a [[differentiable stack]] which then usually goes by the same name $S//G$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_representation_theory}{}\subsubsection*{{Relation to representation theory}}\label{relation_to_representation_theory} The action groupoids $X//G$ of a group $G$ come equipped with a canonical map to $\mathbf{B}G \simeq \ast //G$. Regarded via this map as objects in the [[slice (infinity,1)-category|slice]] of groupoids over $\mathbf{B}G$, action groupoids are in fact [[equivalence|equivalent]] to the actions that they arise from. For more on this see at \emph{[[infinity-action]]} and also at \emph{[[geometry of physics -- representations and associated bundles]]}. \hypertarget{ActionooGrpd}{}\subsection*{{Action $\infty$-groupoid}}\label{ActionooGrpd} All of this goes through almost verbatim for actions in the context of [[(∞,1)-category theory]]. Let $G$ be an [[∞-group]] in that $\mathbf{B}G$ is an [[∞-groupoid]] with a single object. An action of $G$ on an [[(∞,1)-category]] is an [[(∞,1)-functor]] \begin{displaymath} \rho : \mathbf{B}G \to (\infty,1)Cat \end{displaymath} to [[(∞,1)Cat]]. This takes the single object of $\mathbf{B}G$ to some $(\infty,1)$-category $V$. Again we want to \textbf{define} the \emph{action groupoid} $V//G$ as the [[limit in a quasi-category|(∞,1)-categorical colimit]] over the action: \begin{displaymath} V//G := \lim_\to \rho \,. \end{displaymath} By the result \href{http://ncatlab.org/nlab/show/limit+in+a+quasi-category#WithValInooGrpd}{described here} this is, as before, equivalent to the pullback of the ``universal $(\infty,1)Cat$-bundle'' $Z \to (\infty,1)Cat$, namely to the [[coCartesian fibration]] \begin{displaymath} \itexarray{ V//G &\to& Z \\ \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{\rho}{\to}& (\infty,1)Cat } \end{displaymath} classified by $\rho$ under the [[(∞,1)-Grothendieck construction]]. As before, we can continue a [[fiber sequence]] to the left by adjoining the $(\infty,1)$-categorical pullback along the point inclusion $* \to \mathbf{B}G$ \begin{displaymath} \itexarray{ V&\to& V//G &\to& Z \\ \downarrow && \downarrow && \downarrow \\ {*} &\to& \mathbf{B}G &\stackrel{\rho}{\to}& (\infty,1)Cat } \,. \end{displaymath} The resulting total $(\infty,1)$-pullback rectangle is the fiber of $Z \to (\infty,1)Cat$ over the $(\infty,1)$-category $V$, which is $V$ itself, as indicated. \hypertarget{some_comment}{}\subsection*{{Some comment}}\label{some_comment} \begin{itemize}% \item If the action of a Lie group $G$ on the manifold $X$ is free and proper, what you get is a manifold $X/G$. \item If the action of a Lie group $G$ on the manifold $X$ is not necesssarily free and proper, what you get is a Lie groupoid, denoted (among other symbols) by $X//G$. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item the [[groupoid cardinality]] of action groupoids is given by the [[class formula]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item P.J. Higgins, 1971, ``Categories and Groupoids'', van Nostrand, \{New York\}. Reprints in Theory and Applications of Categories, 7 (2005) pp 1--195. \item R. Brown, ``Topology and groupoids'', Booksurge, 2006, available from amazon; details \href{http://groupoids.org.uk/topgpds.html}{here}. \item John Armstrong's article, \href{http://unapologetic.wordpress.com/2007/06/09/groupoids-and-more-group-actions/}{Groupoids (and more group actions)} \item John Baez, \href{http://math.ucr.edu/home/baez/week249.html}{TWF 249} \end{itemize} [[!redirects action groupoids]] [[!redirects action group]] [[!redirects action groups]] \end{document}