\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{action of a category on a set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{action_as_a_functor}{Action as a functor}\dotfill \pageref*{action_as_a_functor} \linebreak \noindent\hyperlink{action_as_an_algebra_for_a_monad}{Action as an algebra for a monad}\dotfill \pageref*{action_as_an_algebra_for_a_monad} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a (small) [[category]] $C$ and given a [[set]] $S$ there are (at least) the following two equivalent ways to define an [[action]] of $C$ on $S$. \hypertarget{action_as_a_functor}{}\subsubsection*{{Action as a functor}}\label{action_as_a_functor} An \textbf{action of a category} $C$ on a [[set]] $S$ is nothing but a [[functor]] $\rho : C \to$ [[Set]]. The particular set $S$ that this functor defines an [[action]] on is the disjoint union of sets that the functor assigns to the objects of $C$: \begin{displaymath} S = \sqcup_{c \in Obj(C)} \rho(c) \,. \end{displaymath} Given an element $s \in S$ which sits in the subset $\rho(c) \subset S$ associated with the object $c$ of $C$, it is acted on by all [[morphism]]s $c \stackrel{f}{\to} d$ in $C$ whose [[source]] is $c$. By the definition of [[functor]] every such morphism defines a map of sets \begin{displaymath} \rho(f) : (\rho(c) \subset S) \to (\rho(d) \subset S) \end{displaymath} and the the action of $f$ on $s \in \rho(c)$ under $\rho$ is \begin{displaymath} \rho(f) : (s \in \rho(c)) \mapsto (\rho(f)(s) \in \rho(d)) \,. \end{displaymath} In the case that $C$ has just a single object $\bullet$ the category $C$ is just a [[monoid]] (might for instance be a [[group]]), there is just a single set $S = \rho(\bullet)$ and we recover the ordinary notion of a [[monoid]] or [[group]] acting on a set. Indeed this generalizes the instance (the motivating example for the notion of action) where $\rho:G\rightarrow \mathbf{Aut}(S)$ is a group action on a set $S$, since the notion of coproduct is a generalization of the notion of automorphism group since naively a [[cardinal]] is an isomorphism class of sets and the notion of coproduct in turn generalizes that of cardinal ( see [[cardinal|there]]). \hypertarget{action_as_an_algebra_for_a_monad}{}\subsubsection*{{Action as an algebra for a monad}}\label{action_as_an_algebra_for_a_monad} An equivalent perspective on the above situation is often useful. To motivate this, notice that the decomposition $S = \sqcup_{c \in Obj(c)} \rho(c)$ of the set $S$ into subsets corresponding to objects of the category $C$ can equivalently be encoded in a map of sets \begin{displaymath} \lambda : S \to Obj(C) \end{displaymath} which sends each element of $S$ to the object of $c$ it corresponds to under the action. (In the case that our category $C$ is a [[groupoid]] or even a [[Lie groupoid]] this map may be familiar as the \emph{anchor map} or \emph{moment map} of the action.) But also the category $C$ itself comes with maps to $Obj(C)$: the [[source]] map $s$ and [[target]] map $t$, which are suggestively drawn as a [[span]] in [[Set]] by writing: \begin{displaymath} \itexarray{ && Mor(C) \\ & {}^{s}\swarrow && \searrow^{t} \\ Obj(C) &&&& Obj(C) } \,. \end{displaymath} Recall from the above discussion that a morphism $f : c \to d$ in $C$ could act on an element $s \in S$ if the image of $s$ under the anchor map $\lambda$ coincides with the source of $f$, i.e. with the image of $f$ under the source map $s$. Formally this means that the pairs of elements of $S$ and morphisms of $C$ which can be paired by the action live in the [[pullback]] set $S {}_\lambda \times_s Mor(C)$ (the fiber product): \begin{displaymath} \itexarray{ && S {}_\lambda \times_s Mor(C) \\ & {}^{pr_1}\swarrow && \searrow^{pr_2} \\ S && && Mor(C) \\ & \searrow^{\lambda}& & {}^{s}\swarrow && \searrow^{t} \\ && Obj(C) &&&& Obj(C) } \,. \end{displaymath} Above we have seen that the aciton of $C$ on $S$ sends every element in this fiber product, which is a pair \begin{displaymath} (s \in \rho(c) \subset S, (c \stackrel{f}{\to} d) \in Mor(C)) \end{displaymath} to an element $\rho(f)(s) \in \rho(d)$. So this is a map of sets $\rho : S {}_\lambda \times_s C \to S$. But a special such map, in that it satisfies a couple of conditions. One condition is that $s \in \rho(c)$ is taken to $\rho(d)$ by $f : c \to d$. This can be encoded by saying that $\rho$ extends to a morphism of [[span]]s from the pullback span above back to $S$: \begin{displaymath} \itexarray{ && S {}_\lambda \times_s Mor(C) \\ & \swarrow && \searrow^{t \circ pr_2} \\ pt &&\downarrow^{\rho}&& Obj(C) \\ & \nwarrow && \nearrow_{\lambda} \\ && S } \end{displaymath} But $\rho$ satisfies yet another compatibility condition: so far we have only used the source-target mathcing condition of the functor $\rho : C \to Set$. There is also its \emph{functoriality}, i.e. its respect for composition. But composition in the category $C$ is itself naturally expressed in terms of morphisms of spans: the set of composable morphisms $Mor(C) {}_t \times_s Mor(C)$ is itself the tip of a [[span]] arising from composing the [[span]] of $C$ with itself by [[pullback]]: \begin{displaymath} \itexarray{ &&&& Mor(C) {}_t\times_s Mor(C) \\ &&& \swarrow && \searrow \\ && Mor(C) &&&& Mor(C) \\ & {}^s\swarrow && \searrow^t && {}^s\swarrow && \searrow^t \\ Obj(C) &&&& Obj(C) &&&& Obj(C) } \end{displaymath} and the composition operation $\circ$ in $C$ is a morphism from this composed span to the original span \begin{displaymath} \itexarray{ && Mor(C) {}_t \times_s Mor(C) \\ & {}^{s \circ pr_1}\swarrow && \searrow^{t \circ pr_2} \\ Obj(C) &&\downarrow^{\circ}&& Obj(C) \\ & {}^{s}\nwarrow && \nearrow_{t} \\ && Mor(C) } \,. \end{displaymath} In total this gives us two different ways to map the total span with tip $S {}_\lambda \times_s Mor(C) {}_t \times_s Mor(C)$ obtained by composing the anchor map span with two copies of the span of $C$ back to the anchor map span \begin{displaymath} \itexarray{ && S {}_\lambda \times_s Mor(C) {}_t \times_s Mor(C) \\ & {}^{}\swarrow && \searrow^{t \circ pr_3} \\ pr &&\downarrow && Obj(C) \\ & {}^{s}\nwarrow && \nearrow_{\lambda} \\ && S } \,. \end{displaymath} The \textbf{action property} of $\rho$, which is nothing but the functoriality of $\rho$ in the above description, says precisely that these two morphisms coincide. Abstractly this says that \begin{itemize}% \item a (small) [[category]] is a [[monad]] in [[span|spans]] in [[Set]]; \item the [[action]] of a [[category]] on a [[set]] is an [[algebra]] for this [[monad]]. \end{itemize} Generalizing this slightly, it should be possible to associate an action of a category $C$ on a category $\coprod_{c\in C_0}\rho(c)$ to a functor $\rho:C\rightarrow \Cat$ with the expectation, that this then is just a module for $C$ as a monad. \end{document}