\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{additive category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{enriched_category_theory}{}\paragraph*{{Enriched category theory}}\label{enriched_category_theory} [[!include enriched category theory contents]] \hypertarget{additive_and_abelian_categories}{}\paragraph*{{Additive and abelian categories}}\label{additive_and_abelian_categories} [[!include additive and abelian categories - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{AdditiveCategory}\hypertarget{AdditiveCategory}{} An \textbf{additive category} is a [[category]] which is \begin{enumerate}% \item an [[Ab-enriched category]]; (sometimes called a [[pre-additive category]]--this means that each [[hom-set]] carries the structure of an [[abelian group]] and composition is [[bilinear map|bilinear]]) \item which admits [[finite limit|finite]] [[coproducts]] (and hence, by prop. \ref{ProductsAreBiproducts} below, finite [[products]] which coincide with the coproducts, hence finite [[biproducts]]). \end{enumerate} The natural [[morphisms]] \emph{between} additive categories are [[additive functors]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} A [[pre-abelian category]] is an additive category which also has [[kernels]] and [[cokernels]]. Equivalently, it is an Ab-enriched category with all [[finite limits]] and finite [[colimits]]. An especially important sort of additive category is an [[abelian category]], which is a pre-abelian one satisfying the extra exactness property that all [[monomorphisms]] are [[kernels]] and all [[epimorphisms]] are [[cokernels]]. See at \emph{[[additive and abelian categories]]} for more. \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[Ab]]-enrichment of an additive category does not have to be given a priori. Every [[semiadditive category]] (a category with finite [[biproducts]]) is automatically [[enriched category|enriched]] over [[commutative monoids]] (as described at \emph{[[biproduct]]}), so an additive category may be defined as a category with finite biproducts whose [[hom-object|hom-monoids]] happen to be [[groups]]. (The requirement that the hom-monoids be groups can even be stated in elementary terms without discussing enrichment at all, but to do so is not very enlightening.) Note that the entire $Ab$-enriched structure follows automatically for [[abelian category|abelian categories]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} Some authors use \textbf{additive category} to simply mean an Ab-enriched category, with no further assumptions. It can also be used to mean a $CMon$-enriched (commutative monoid enriched) category, with or without assumptions of products. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{ProductsAreBiproducts}\hypertarget{ProductsAreBiproducts}{} In an [[Ab-enriched category]] (or even just a $CMon$-enriched category), a [[finite product|finite]] [[product]] is also a [[coproduct]], and dually. This statement includes the zero-ary case: any [[terminal object]] is also an [[initial object]], hence a [[zero object]] (and dually), hence every additive category has a [[zero object]]. More precisely, for $\{X_i\}_{i \in I}$ a [[finite set]] of objects in an Ab-enriched category, the unique morphism \begin{displaymath} \underset{i \in I}{\coprod} X_i \longrightarrow \underset{j \in I}{\prod} X_j \end{displaymath} whose components are identities for $i = j$ and are [[zero morphism|zero]] otherwise is an [[isomorphism]]. \end{prop} \begin{proof} Consider first the nullary (i.e., zero-ary) case. Given a [[terminal object]] $\ast$, the unique morphism $id_\ast: \ast \to \ast$ is the zero morphism $0$ in its hom-object. For any object $A$, the zero morphism $0_A: \ast \to A$ must equal any morphism $f: \ast \to A$ on account of $f = f id_\ast = f 0 = 0_A$ where the last equation is by $CMon$-enrichment. Hence $\ast$ is initial. (N.B.: this argument applies more generally to categories [[enriched category|enriched]] in [[pointed sets]], and is self-[[formal duality|dual]].) Consider now the case of binary (co-)products. Using [[zero morphisms]], in addition to its canonical [[projection]] maps $p_i \colon X_1 \times X_2 \to X_i$, any binary [[product]] also admits ``injection'' maps $X_i \to X_1 \times X_2$, and dually for the [[coproduct]]: \begin{displaymath} \itexarray{ X_1 && && X_2 \\ & \searrow^{\mathrlap{(id,0)}} && {}^{\mathllap{(0,id)}}\swarrow \\ {}^{\mathllap{id_{X_1}}}\downarrow && X_1 \times X_2 && \downarrow^{\mathrlap{id_{X_2}}} \\ & \swarrow_{\mathrlap{p_{X_1}}} && {}_{\mathllap{p_{X_2}}}\searrow \\ X_1 && && X_2 } \;\;\;\;\;\;\;\;\;\;\;\;\,,\;\;\;\;\;\;\;\;\;\;\;\; \itexarray{ X_1 && && X_2 \\ & \searrow^{\mathrlap{i_{X_1}}} && {}^{\mathllap{i_{X_2}}}\swarrow \\ {}^{\mathllap{id_{X_1}}}\downarrow && X_1 \sqcup X_2 && \downarrow^{\mathrlap{id_{X_2}}} \\ & \swarrow_{\mathrlap{(id,0)}} && {}_{\mathllap{(0,id)}}\searrow \\ X_1 && && X_2 } \,. \end{displaymath} Observe some basic compatibility of the $Ab$-enrichment with the product: First, for $(\alpha_1,\beta_1), (\alpha_2, \beta_2)\colon R \to X_1 \times X_2$ then \begin{displaymath} (\star) \;\;\;\;\;\; (\alpha_1,\beta_1) + (\alpha_2, \beta_2) = (\alpha_1+ \alpha_2 , \; \beta_1 + \beta_2) \end{displaymath} (using that the projections $p_1$ and $p_2$ are linear and by the universal property of the product). Second, $(id,0) \circ p_1$ and $(0,id) \circ p_2$ are two projections on $X_1\times X_2$ whose sum is the identity: \begin{displaymath} (\star\star) \;\;\;\;\;\; (id, 0) \circ p_1 + (0, id) \circ p_2 = id_{X_1 \times X_2} \,. \end{displaymath} (We may check this, via the [[Yoneda lemma]] on [[generalized elements]]: for $(\alpha, \beta) \colon R \to X_1\times X_2$ any morphism, then $(id,0)\circ p_1 \circ (\alpha,\beta) = (\alpha,0)$ and $(0,id)\circ p_2\circ (\alpha,\beta) = (0,\beta)$, so the statement follows with equation $(\star)$.) Now observe that for $f_i \;\colon\; X_i \to Q$ any two morphisms, the sum \begin{displaymath} \phi \;\coloneqq\; f_1 \circ p_1 + f_2 \circ p_2 \;\colon\; X_1 \times X_2 \longrightarrow Q \end{displaymath} gives a morphism of [[cocones]] \begin{displaymath} \itexarray{ X_1 && && X_2 \\ & \searrow^{\mathrlap{(id,0)}} && {}^{\mathllap{(0,id)}}\swarrow \\ {}^{\mathllap{id_{X_1}}}\downarrow && X_1 \times X_2 && \downarrow^{\mathrlap{id_{X_2}}} \\ & && \\ X_1 && \downarrow^{\mathrlap{\phi}} && X_2 \\ & {}_{\mathllap{f_1}}\searrow && \swarrow_{\mathrlap{f_2}} \\ && Q } \,. \end{displaymath} Moreover, this is unique: suppose $\phi'$ is another morphism filling this diagram, then, by using equation $(\star \star)$, we get \begin{displaymath} \begin{aligned} (\phi-\phi') & = (\phi - \phi') \circ id_{X_1 \times X_2} \\ &= (\phi - \phi') \circ ( (id_{X_1},0) \circ p_1 + (0,id_{X_2})\circ p_2 ) \\ & = \underset{ = 0}{\underbrace{(\phi - \phi') \circ (id_{X_1}, 0)}} \circ p_1 + \underset{ = 0}{\underbrace{(\phi - \phi') \circ (0, id_{X_2})}} \circ p_2 \\ & = 0 \end{aligned} \end{displaymath} and hence $\phi = \phi'$. This means that $X_1\times X_2$ satisfies the [[universal property]] of a [[coproduct]]. By a [[formal dual|dual]] argument, the binary coproduct $X_1 \sqcup X_2$ is seen to also satisfy the universal property of the binary product. By [[induction]], this implies the statement for all finite (co-)products. (If a particular finite (co-)product exists but binary ones do not, one can adapt the above argument directly to that case.) \end{proof} \begin{remark} \label{}\hypertarget{}{} Such products which are also coproducts as in prop. \ref{ProductsAreBiproducts} are sometimes called \emph{[[biproducts]]} or \emph{[[direct sums]]}; they are [[absolute limit|absolute limits]] for [[Ab]]-[[enriched category|enrichment]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The coincidence of products with biproducts in prop. \ref{ProductsAreBiproducts} does \emph{not} extend to infinite products and coproducts.) In fact, an [[Ab-enriched category]] is [[Cauchy complete category|Cauchy complete]] just when it is additive and moreover its [[idempotents]] split. \end{remark} Conversely: \begin{defn} \label{SemiadditiveCategory}\hypertarget{SemiadditiveCategory}{} A \textbf{[[semiadditive category]]} is a [[category]] that has all [[finite products]] which, moreover, are [[biproducts]] in that they coincide with finite [[coproducts]] as in def. \ref{ProductsAreBiproducts}. \end{defn} \begin{prop} \label{SemiAdditivityInducesAbelianMonoidEnrichment}\hypertarget{SemiAdditivityInducesAbelianMonoidEnrichment}{} In a [[semiadditive category]], def. \ref{SemiadditiveCategory}, the [[hom-sets]] acquire the structure of [[commutative monoids]] by defining the sum of two morphisms $f,g \;\colon\; X \longrightarrow Y$ to be \begin{displaymath} f + g \;\coloneqq\; X \overset{\Delta_X}{\to} X \times X \simeq X \oplus X \overset{f \oplus g}{\longrightarrow} Y \oplus Y \simeq Y \sqcup Y \overset{\nabla_X}{\to} Y \,. \end{displaymath} With respect to this operation, [[composition]] is [[bilinear map|bilinear]]. \end{prop} \begin{proof} The [[associativity]] and commutativity of $+$ follows directly from the corresponding properties of $\oplus$. Bilinearity of composition follows from [[natural transformation|naturality]] of the [[diagonal]] $\Delta_X$ and [[codiagonal]] $\nabla_X$: \begin{displaymath} \itexarray{ W &\overset{\Delta_W}{\longrightarrow}& W \times W &\overset{\simeq}{\longrightarrow}& W \oplus W \\ \downarrow^{\mathrlap{e}} && \downarrow^{\mathrlap{e \times e}} && \downarrow^{\mathrlap{e \oplus e}} \\ X &\overset{\Delta_X}{\to}& X \times X &\simeq& X \oplus X &\overset{f \oplus g}{\longrightarrow}& Y \oplus Y &\simeq& Y \sqcup Y &\overset{\nabla_X}{\to}& Y \\ && && && \downarrow^{\mathrlap{h \oplus h}} && \downarrow^{\mathrlap{h \sqcup h}} && \downarrow^{\mathrlap{h}} \\ && && && Z \oplus Z &\simeq& Z \sqcup Z &\overset{\nabla_Z}{\to}& Z } \end{displaymath} \end{proof} \begin{prop} \label{SemiaddtiveStructureUnderlyingAdditiveInducesOriginalEnrichment}\hypertarget{SemiaddtiveStructureUnderlyingAdditiveInducesOriginalEnrichment}{} Given an additive category according to def. \ref{AdditiveCategory}, then the enrichement in [[commutative monoids]] which is induced on it via prop. \ref{ProductsAreBiproducts} and prop. \ref{SemiAdditivityInducesAbelianMonoidEnrichment} from its underlying [[semiadditive category]] structure coincides with the original enrichment. \end{prop} \begin{proof} By the proof of prop. \ref{ProductsAreBiproducts}, the [[codiagonal]] on any object in an additive category is the sum of the two projections: \begin{displaymath} \nabla_X \;\colon\; X \oplus X \overset{p_1 + p_2}{\longrightarrow} X \,. \end{displaymath} Therefore (checking on [[generalized elements]], as in the proof of prop. \ref{ProductsAreBiproducts}) for all morphisms $f,g \colon X \to Y$ we have [[commuting squares]] of the form \begin{displaymath} \itexarray{ X &\overset{f+g}{\longrightarrow}& Y \\ {}^{\mathllap{\Delta_X}}\downarrow && \uparrow^{\mathrlap{\nabla_Y =}}_{\mathrlap{p_1 + p_2}} \\ X \oplus X &\underset{f \oplus g}{\longrightarrow}& Y\oplus Y } \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} Prop. \ref{SemiaddtiveStructureUnderlyingAdditiveInducesOriginalEnrichment} says that being an [[additive category]] is an extra [[property]] on a category, not extra [[structure]]. We may ask whether a given category is additive or not, without specifying with respect to which abelian group structure on the hom-sets. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[semiadditive category]] \item [[abelian category]] \item [[additive (∞,1)-category]] \item [[triangulated category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of [[model category]] structures on additive categories is around def. 4.3 of \begin{itemize}% \item Apostolos Beligiannis, \emph{Homotopy theory of modules and Gorenstein rings}, Math. Scand. 89 (2001) (\href{http://users.uoi.gr/abeligia/mathscand.pdf}{pdf}) \end{itemize} [[!redirects additive categories]] \end{document}