\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adiabatic switching} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{adiabatic_switching}{Adiabatic switching}\dotfill \pageref*{adiabatic_switching} \linebreak \noindent\hyperlink{adiabatic_limit}{Adiabatic limit}\dotfill \pageref*{adiabatic_limit} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{adiabatic_switching}{}\subsubsection*{{Adiabatic switching}}\label{adiabatic_switching} In [[perturbative quantum field theory]], the term \emph{adiabatic switching} refers to considering a smooth transition between vanishing and non-vanishing [[interaction]] [[coupling constant|coupling]]: the interactions is slowly, hence (borrowing a term from [[thermodynamics]]) ``adiabatically'', switched on or off. This is mostly a mathematical device, not meant to directly reflect a physical situation of changing coupling, but it does serve to construct physical quantities. This is closely related to the role of [[operator-valued distributions]] which are quantities that give well defined [[linear operators]] (hence [[quantum observables]]) only when evaluated on any [[bump function]]. Originally adiabatic switching was considered (\hyperlink{LippmannSchwinger50}{Lippmann-Schwinger 50}) only in the [[time]]-direction (for a fixed choice of time on [[Minkowski spacetime]]) by multiplying the [[interaction]] term of the [[Lagrangian density]]/[[Hamiltonian]] by the [[exponential]] $\exp(- \epsilon {\Vert t \Vert})$ (for $\epsilon \in (0,\infty)$ a [[positive number|positive]] [[real number]] and for ${\Vert t\Vert}$ the [[absolute value]] of the time [[coordinate]]). Review is for instance in (\hyperlink{Strocchi13}{Strocchi 13, section 6.3}). Using this, the \emph{Gell-Mann and Low formula} (\hyperlink{GellMannLow51}{Gell-Mann \& Low 51}, see \hyperlink{Molinari06}{Molinari 06}) expresses the [[eigenstates]] $\vert \psi \rangle$ of an interacting [[Hamiltonian]] $H = H_{free} + H_{int}$ in terms of the eigenstates $\vert \Psi_{free} \rangle$ of the free Hamiltonian by the ``adiabatic limit'' \begin{displaymath} \vert \Psi^{\pm}_{int} \rangle \;\propto\; \underset{\epsilon \to 0}{\lim} S_\epsilon(0, \pm \infty) \vert \Psi_{free} \rangle \end{displaymath} (if the [[limit of a sequence|limit]] exists) where $S_\epsilon$ denotes the [[S-matrix]] of the adiabatically switched Hamiltonian $H_\epsilon \coloneqq H_{free} + e^{- \epsilon {\Vert t\Vert}}H_{int}$. More generally, one may consider adiabatic switching taking place not just in time, but in all of [[spacetime]]. This the basis of [[causal perturbation theory]] and [[locally covariant perturbative quantum field theory]]: In the construction of [[perturbative quantum field theory]] via the method of [[causal perturbation theory]] the [[interaction]] terms $L_{int}$ used in the mathematical construction of the [[S-matrix]] are multiplied with a ``[[coupling constant]]'' $g$ which is in fact taken to be a [[smooth function]] of [[compact support]] on [[spacetime]], hence a [[bump function]]: \begin{displaymath} L_g = L_{free} + g L_{int} \,. \end{displaymath} This means that the the [[interaction]] as modeled by the [[S-matrix]] \begin{displaymath} S_g \coloneqq T \exp( \tfrac{i}{\hbar} \int_{X} g :L_{int}(x): ) \end{displaymath} is non-trivial only on a [[compact topological space|compact]] [[subspace]] of [[spacetime]], towards its boundary it smoothly drops to zero. Hence outside this region the interaction is ``switched off''. Since the actual interactions in [[physics]] are of course \emph{not} ``switched off'' anywhere, the use of an adiabatic switching is just an intermediate mathematical step. Originally in (\hyperlink{EpsteinGlaser73}{Epstein-Glaser 73}) the idea was that after having constructed the [[S-matrix]] for any adiabatic switching $g$, the [[limit of a sequence|limit]] (``adiabatic limit'') $g \to 1$ had to be taken to remove the switching in the end. Failure of this limit to exist is interpreted as ``[[infrared divergency]]'' of the [[perturbative quantum field theory]] (since the divergency comes from large scales, hence long [[wavelength]]). But as observed in (\hyperlink{IlinSlavnov78}{Il'in-Slavnov 78}) and rediscovered in (\hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00}), an adiabatic switching map that is unity on a globally hyperbolic sub-spacetime $O \subset X$ is sufficient to compute the perturbative [[interacting field algebra]], hence the [[algebra of quantum observables]] $A(O)$ on that subspace, and the collection of all of these as $O$ ranges forms a [[causally local net of observables]] which fully captures the [[quantum field theory]] in the sense of the [[Haag-Kastler axioms]] (\href{S-matrix#PerturbativeQuantumObservablesIsLocalnet}{this prop.}). This perspective is now known as \emph{[[locally covariant algebraic quantum field theory]]}. \hypertarget{adiabatic_limit}{}\subsubsection*{{Adiabatic limit}}\label{adiabatic_limit} The [[limit of a sequence|limit]] of the [[perturbative S-matrix]] as the [[adiabatic switching]] is removed (if it exists) is called the \emph{adiabatic limit} or \emph{strong adiabatic limit}. If one just asks that the corresponding limit exists for the [[n-point functions]] one speaks of a \emph{weak adiabatic limit}. Even with the adiabatically switched S-matrix elements (not taking a limit) the [[local net of quantum observables]] is well defined (\href{S-matrix#PerturbativeQuantumObservablesIsLocalnet}{this prop.}), this is hence a [[functor]] \begin{displaymath} \mathcal{O} \mapsto \mathcal{A}(\mathcal{O}) \end{displaymath} that assigns [[algebras of observables]] to [[causally closed subsets]] of [[spacetime]]. The [[colimit]] algebra \begin{displaymath} \mathcal{A} \coloneqq \underset{\underset{\mathcal{O}}{\longrightarrow}}{\lim} \mathcal{A}(\mathcal{O}) \end{displaymath} over this [[functor]] (in the sense of [[category theory]]) always exists. This is also called the \emph{algebraic adiabatic limit}. (See around \hyperlink{Duch17}{Duch 17, section 4} for review of strong, weak and algebraic adiabaitc limit; and \hyperlink{Duch17}{Duch 17, chapter II} for results on the weak adiabatic limit) Here \begin{enumerate}% \item the \emph{algebraic adiabatic} limit defines the \emph{[[quantum observables]]} in the limit; \item the weak adiabatic limit may serve to define also the \emph{[[state on a star-algebra|states]]}, hence the [[interacting vacuum]] (\hyperlink{Duch17}{Duch 17, p. 113-114}). \end{enumerate} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept of adiabatic switching in the time direction was introduced in \begin{itemize}% \item B. A. Lippmann, [[Julian Schwinger]], Phys. Rev. 79, 469 (1950) \end{itemize} reviewed for instance in \begin{itemize}% \item [[Franco Strocchi]], sectioon 6.3 of \emph{An Introduction to Non-Perturbative Foundations of Quantum Field Theory}, Oxford University Press, 2013 \end{itemize} and the corresponding formula for the interacting eigenstates in terms of the free ones is due to \begin{itemize}% \item [[Murray Gell-Mann]], F. Low, \emph{Bound states in quantum field theory} Phys. Rev. 84, 350 (1951) \item [[Murray Gell-Mann]], M. L. Goldberger, Phys. Rev. 91 398 (1953) \end{itemize} see \begin{itemize}% \item Luca Guido Molinari, \emph{Another proof of Gell-Mann and Low's theorem}, Journal of Mathematical Physics 48, 052113, 2007 (\href{https://arxiv.org/abs/math-ph/0612030}{arXiv:math-ph/0612030}) \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Gell-Mann_and_Low_theorem}{Gell-Mann and Low theorem}} \end{itemize} The generalization to switching in all space-time directions was considered for the construction of [[causal perturbation theory]] in \begin{itemize}% \item [[Henri Epstein]] and [[Vladimir Glaser]], \emph{[[The Role of locality in perturbation theory]]}, Annales Poincar\'e{} Phys. Theor. A 19 (1973) 211. \end{itemize} The observation that this in fact makes causal perturbation theory a tool for constructing [[local nets of observables]] for [[locally covariant perturbative quantum field theory]] is due to \begin{itemize}% \item V. A. Il'in and D. S. Slavnov, \emph{Observable algebras in the S-matrix approach}, Theor. Math. Phys. 36 (1978) 32. \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], \emph{Microlocal Analysis and Interacting Quantum Field Theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661,2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \end{itemize} The term ``algebraic adiabatic limit'' for the resulting [[local net of observables]] (or its [[inductive limit]]) appears in \begin{itemize}% \item [[Klaus Fredenhagen]], [[Falk Lindner]], p. 7 of \emph{Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics}, Communications in Mathematical Physics Volume 332, Issue 3, pp 895-932, 2014 (\href{https://arxiv.org/abs/1306.6519}{arXiv:1306.6519}) \end{itemize} The weak adiabatic limit in [[causal perturbation theory]] for massive fields was shown to exists in \begin{itemize}% \item \hyperlink{EpsteinGlaser73}{Epstein-Glaser 73} \end{itemize} Extension of this result to [[quantum electrodynamics]] and [[phi{\tt \symbol{94}}4 theory]] was given in \begin{itemize}% \item P. Blanchard and R. Seneor, \emph{Green’s functions for theories with massless particles (in perturbation theory)}, Ann. Inst. H. Poincaré Sec. A 23 (2), 147–209 (1975) (\href{http://www.numdam.org/item?id=AIHPA_1975__23_2_147_0}{Numdam}) \end{itemize} See also \begin{itemize}% \item [[Günter Scharf]], section 3.11 of \emph{[[Finite Quantum Electrodynamics -- The Causal Approach]]}, Berlin: Springer-Verlag, 1995, 2nd edition \end{itemize} Further extension of the result is due to \begin{itemize}% \item [[Paweł Duch]], \emph{Massless fields and adiabatic limit in quantum field theory} (\href{https://arxiv.org/abs/1709.09907}{arXiv:1709.09907}) \end{itemize} [[!redirects adiabatic switchings]] [[!redirects Gell-Mann and Low formula]] [[!redirects adiabatic limit]] [[!redirects adiabatic limits]] [[!redirects algebraic adiabatic limit]] [[!redirects algebraic adiabatic limits]] [[!redirects strong adiabatic limit]] [[!redirects strong adiabatic limits]] [[!redirects weak adiabatic limit]] [[!redirects weak adiabatic limits]] \end{document}