\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adinkra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{superalgebra}{}\paragraph*{{Superalgebra}}\label{superalgebra} [[!include supergeometry - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{classification}{Classification}\dotfill \pageref*{classification} \linebreak \noindent\hyperlink{from_supermultiplets_in_higher_dimensions}{From supermultiplets in higher dimensions}\dotfill \pageref*{from_supermultiplets_in_higher_dimensions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[super-algebra|super]]-[[representation theory]], what is called \emph{adinkras} (\hyperlink{FauxGates04}{Faux-Gates 04}) is a graphical tool for denoting those [[representations]] ([[super multiplets]]) of the $N$-extended [[supersymmetry]] algebras in one dimension ([[supersymmetric quantum mechanics]] with $N$ supersymmetries) for which the [[supersymmetry]] generators act, up to [[derivatives]] and prefactors, by [[permutation]] of [[superfield]] components. These are called \emph{adinkraic} representations (\hyperlink{Zhang13}{Zhang 13, p. 16}). While adinkraic representations are special among all representations of the 1-dimensional $N$-extended supersymmetry algebra, the idea is that the [[dimensional reduction]] of representations ([[supermultiplets]]) of higher dimensional supersymmetry algebras down to 1d are of this form, at least for dimensional reduction from $d = 4$ and $N = \mathbf{4}$ (\hyperlink{GGMPPRW09}{GGMPPRW 09, section 3}, \hyperlink{GatesHubschStiffler14}{Gates-Hubsch-Stiffler 14}). The classification of adinkras, and hence of adinkraic representations, turns out to be controled by [[linear codes]] (\hyperlink{DoranFauxGatesHubschIgaLandweberMiller11}{Doran \& Faux \& Gates \& HubschIgaLandweberMiller 11}) and to be related to certain special [[super Riemann surfaces]] via [[dessins d'enfants]] (\hyperlink{DoranIgaLandweberMendez-Diez13}{Doran \& Iga \& Landweber \& Mendez-Diez 13}, \hyperlink{DoranIgaKostiukMendes-Diez16}{Doran \& Iga \& Kostiuk \&Mendes-Diez 16}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For background, see at \emph{[[geometry of physics -- supersymmetry]]}. For $N \in \mathbb{N}$, write $\mathbb{R}^{1 \vert N}$ for the [[super Lie algebra]] over the [[real numbers]] that is spanned by a single generator $P$ in even (i.e., bosonic) degree and $N$ generators $Q_I$, $I \in \{1, 2, \cdots, N\}$ in odd (i.e., fermionic) degree, whose only non-trivial components of the super [[Lie bracket]] is \begin{displaymath} [Q_I, Q_J] = 2 \delta_{I J} P = \left\{ \itexarray{ 2 P & \vert \; I = J \\ 0 & \vert \; \text{otherwise} } \right. \end{displaymath} This is the 1-dimensional $N$-extended [[super translation super Lie algebra]]. We may think of this as the super-translational symmetry of 1-dimensional $N$-extended [[super Minkowski spacetime]]. Consider then super [[Lie algebra representations]] of $\mathbb{R}^{1 \vert N}$ on [[super vector spaces]] of smooth [[superfields]] on $\mathbb{R}^{1 \vert N}$ (regarded as a [[supermanifold]]) and such that the bosonic generator $P$ acts as the [[derivative]] operator on [[smooth functions]] on $\mathbb{R}^1$ in each component. If in addition the representation is such that in the canonical [[linear basis]] the odd generators $Q_I$ send even/odd basis elements $\phi_i$ to single odd/even basis elements $\psi_j$ (as opposed to [[linear combinations]] of them), hence if the $Q_I$ act apart from degree-shift and possibly [[differentiation]] by [[permutations]] on the components of the [[superfields]], then this representation of $\mathbb{R}^{1\vert N}$ is called \emph{adinkraic}. (\hyperlink{Zhang13}{Zhang 13, p. 16}). The corresponding \emph{adinkra} is the [[bipartite graph]] which expresses these permutations: \begin{quote}% table grabbed from \hyperlink{DoranIgaLandweberMendez-Diez13}{Doran \& Iga \& Landweber \& Mendez-Diez 13, p. 7} \end{quote} \begin{quote}% graphics grabbed from \hyperlink{IgaZhang15}{Iga-Zhang 15, p. 3} \end{quote} \hypertarget{classification}{}\subsection*{{Classification}}\label{classification} The topology of an adinkra graph together with its edge coloring in $\{1,2, \cdots, N\}$ is called its \emph{chromotopology}. The set of adinkra chromotopologies is equivalent to the set of colored $N$-cubs modulo doubly even length-$N$ [[linear codes]] (\hyperlink{DoranFauxgatesHubschIgaLandweberMiller11}{Doran-Faux-Gates-Hubsch-Iga-Landweber-Miller 11}) (A [[linear code]] of length $N$ is a [[linear subspace]] of $(\mathbb{F}_2)^N$ for $\mathbb{F}_2$ the [[prime field]] with two elements and it is \emph{doubly even} if every element has weight a multiple of 4. ) see \hyperlink{Zhang13}{Zhang 13, chapter 2} \begin{quote}% graphics grabbed from \hyperlink{IgaZhang15}{Iga-Zhang 15, p. 4} \end{quote} \hypertarget{from_supermultiplets_in_higher_dimensions}{}\subsection*{{From supermultiplets in higher dimensions}}\label{from_supermultiplets_in_higher_dimensions} The [[dimensional reduction]] of the smallest [[supermultiplets]] of $d = 4, N = \mathbf{4}$ supersymmetry down to 1d yield adinkraic representations (\hyperlink{GGMPPRW09}{GGMPPRW 09, section 3}, \hyperlink{GatesHubschStiffler14}{Gates-Hubsch-Stiffler 14}). Corresponding adinkras for the chiral scalar supermultiplet (CM), the vector multiplet (VM) and the tensor multiplet (TM) look as follows: \hypertarget{references}{}\subsection*{{References}}\label{references} For an introduction to adinkras, see the talk \begin{itemize}% \item [[Lutian Zhao]], \emph{What is an Adinkra?}, 2014 (\href{http://math.sjtu.edu.cn/conference/Bannai/2014/data/20141213B/slides.pdf}{slides}) \end{itemize} The concept of adinkras was introduced into [[supersymmetry]] [[representation theory]] in \begin{itemize}% \item [[Michael Faux]], [[Jim Gates]], \emph{Adinkras: A Graphical Technology for Supersymmetric Representation Theory}, Phys.Rev. D71 (2005) 065002 (\href{https://arxiv.org/abs/hep-th/0408004}{hep-th/0408004}) \end{itemize} and further developed in the article \begin{itemize}% \item [[Charles Doran]], [[Michael Faux]], [[Jim Gates]], [[Tristan Hübsch]], [[Kevin Iga]], [[Greg Landweber]], \emph{On Graph-Theoretic Identifications of Adinkras, Supersymmetry Representations and Superfields}, Int. J. Mod. Phys. A22: 869-930, 2007 (\href{https://arxiv.org/abs/math-ph/0512016}{arXiv:math-ph/0512016}) \end{itemize} and many more (``DFGHIL collaboration''). For instance the relation to Clifford supermodules is discussed in \begin{itemize}% \item [[Charles Doran]], [[Michael Faux]], [[Jim Gates]], [[Tristan Hübsch]], [[Kevin Iga]], [[Greg Landweber]], \emph{Off-shell supersymmetry and filtered Clifford supermodules} (\href{https://arxiv.org/abs/math-ph/0603012}{arXiv:math-ph/0603012}) \end{itemize} kinetic terms are discussed in \begin{itemize}% \item [[Charles Doran]], [[Michael Faux]], [[Jim Gates]], [[Tristan Hübsch]], [[Kevin Iga]], [[Greg Landweber]], \emph{Adinkras and the Dynamics of Superspace Prepotentials} (\href{https://arxiv.org/abs/hep-th/0605269}{arXiv:hep-th/0605269}) \end{itemize} The classification of adinkras in terms of [[graphs]] and [[linear codes]] is due to \begin{itemize}% \item [[Charles Doran]], [[Michael Faux]], [[Jim Gates]], [[Tristan Hübsch]], [[Kevin Iga]], [[Greg Landweber]], R. L. Miller, \emph{Codes and Supersymmetry in One Dimension}, Adv. in Th. Math. Phys. 15 (2011) 1909-1970 (\href{https://arxiv.org/abs/1108.4124}{arXiv:1108.4124}) \end{itemize} and discussed in mathematical detail in \begin{itemize}% \item [[Yan X Zhang]], \emph{Adinkras for Mathematicians} (\href{https://arxiv.org/abs/1111.6055}{arXiv:1111.6055}) \item [[Yan X Zhang]], \emph{The combinatorics of Adinkras}, PhD thesis, MIT (2013) (\href{http://math.mit.edu/~yanzhang/math/thesis_adinkras.pdf}{pdf}) \end{itemize} The [[dimensional reduction]] of the standard [[supermultiplets]] of $d = 4, N = 1$ supersymmetry to adinkraic representations of $d = 1, N=4$ is due to \begin{itemize}% \item [[Jim Gates]], J. Gonzales, B. MacGregor, J. Parker, R. Polo-Sherk, V.G.J. Rodgers, L. Wassink, \emph{$4D$, $N = 1$ Supersymmetry Genomics (I)}, JHEP 0912:008,2009 (\href{https://arxiv.org/abs/0902.3830}{arXiv:0902.3830}) \item [[Jim Gates]], [[Tristan Hübsch]], Kory Stiffler, \emph{Adinkras and SUSY Holography}, Int. J. Mod. Phys. A29 no. 7, (2014) 1450041 (\href{https://arxiv.org/abs/1208.5999}{arXiv:1208.5999}) \end{itemize} See also \begin{itemize}% \item [[Kevin Iga]], [[Yan Zhang]], \emph{Structural Theory of 2-d Adinkras} (\href{https://arxiv.org/abs/1508.00491}{arXiv:1508.00491}) \end{itemize} The relation of adinkras to special [[super Riemann surfaces]] via [[dessins d'enfants]] is due to \begin{itemize}% \item [[Charles Doran]], [[Kevin Iga]], [[Greg Landweber]], [[Stefan Méndez-Diez]], \emph{Geometrization of $\mathcal{N}$-Extended 1-Dimensional Supersymmetry Algebras} (\href{https://arxiv.org/abs/1311.3736}{arXiv:1311.3736}) \item [[Charles Doran]], [[Kevin Iga]], Jordan Kostiuk, [[Stefan Méndez-Diez]], \emph{Geometrization of $\mathcal{N}$-Extended 1-Dimensional Supersymmetry Algebras II} (\href{https://arxiv.org/abs/1610.09983}{arXiv:1610.09983}) \end{itemize} Further developments includes \begin{itemize}% \item Mathew Calkins, D. E. A. Gates, [[Jim Gates]] Jr., Kory Stiffler, \emph{Adinkras, 0-branes, Holoraumy and the SUSY QFT/QM Correspondence} (\href{https://arxiv.org/abs/1501.00101}{arXiv:1501.00101}) \end{itemize} Discussion in the context of [[spectral triples]] is in \begin{itemize}% \item [[Matilde Marcolli]], Nick Zolman, \emph{Adinkras, Dessins, Origami, and Supersymmetry Spectral Triples} (\href{https://arxiv.org/abs/1606.04463}{arXiv:1606.04463}) \end{itemize} See also \begin{itemize}% \item Wes Caldwell, Alejandro Diaz, Isaac Friend, [[Jim Gates]], Jr., Siddhartha Harmalkar, Tamar Lambert-Brown, Daniel Lay, Karina Martirosova, Victor Meszaros, Mayowa Omokanwaye, Shaina Rudman, Daniel Shin, Anthony Vershov, \emph{On the Four Dimensional Holoraumy of the $4D$, $\mathcal{N} = 1$ Complex Linear Supermultiplet} (\href{https://arxiv.org/abs/1702.05453}{arXiv:1702.05453}) \item Wikipedia, \emph{} \end{itemize} [[!redirects adinkras]] \end{document}