\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adjoint (infinity,1)-functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_homequivalences}{In terms of hom-equivalences}\dotfill \pageref*{in_terms_of_homequivalences} \linebreak \noindent\hyperlink{InTermsOfCographsHeteromorphisms}{In terms of cographs / heteromorphisms}\dotfill \pageref*{InTermsOfCographsHeteromorphisms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{uniqueness_of_adjoints}{Uniqueness of adjoints}\dotfill \pageref*{uniqueness_of_adjoints} \linebreak \noindent\hyperlink{PresOfLims}{Preservation of limits and colimits}\dotfill \pageref*{PresOfLims} \linebreak \noindent\hyperlink{OnHomotopyCat}{Adjunctions on homotopy categories}\dotfill \pageref*{OnHomotopyCat} \linebreak \noindent\hyperlink{FullAndFaithfulAdjoints}{Full and faithful adjoints}\dotfill \pageref*{FullAndFaithfulAdjoints} \linebreak \noindent\hyperlink{OnSlices}{On over-$(\infty,1)$-categories}\dotfill \pageref*{OnSlices} \linebreak \noindent\hyperlink{UniversalArrows}{In terms of universal arrows}\dotfill \pageref*{UniversalArrows} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{quillen_adjunctions}{Quillen adjunctions}\dotfill \pageref*{quillen_adjunctions} \linebreak \noindent\hyperlink{SimplicialAndDerived}{Simplicial and derived adjunctions}\dotfill \pageref*{SimplicialAndDerived} \linebreak \noindent\hyperlink{localizations}{Localizations}\dotfill \pageref*{localizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of adjunction between two [[(∞,1)-functors]] generalizes the notion of [[adjoint functors]] from [[category theory]] to [[(infinity,1)-category|(∞,1)-category theory]]. There are many equivalent definitions of the ordinary notion of [[adjoint functor]]. Some of them have more evident generalizations to some parts of [[higher category theory]] than others. \begin{itemize}% \item One definition of ordinary adjoint functors says that a pair of functors $C \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} D$ is an adjunction if there is a [[natural transformation|natural isomorphism]] \begin{displaymath} Hom_C(L(-),(-) \simeq Hom_D(-,R(-)) \,. \end{displaymath} The analog of this definition makes sense very generally in [[(∞,1)-category theory]], where $Hom_C(-,-) : C^{op} \times C \to \infty Grpd$ is the $(\infty,1)$-categorical hom-object. \item One other characterization of adjoint functors in terms of their [[cograph of a functor|cographs]]/[[heteromorphisms]]: the [[Cartesian fibrations]] to which the . At [[cograph of a functor]] it is discussed how two functors $L : C \to D$ and $R : D \to C$ are adjoint precisely if the cograph of $L$ coincides with the cograph of $R$ up to the obvious reversal of arrows \end{itemize} \begin{displaymath} (L \dashv R) \Leftrightarrow (cograph(L) \simeq cograph(R^{op})^{op}) \,. \end{displaymath} Using the [[(∞,1)-Grothendieck construction]] the notion of cograph of a functor has an evident generalization to $(\infty,1)$-categories. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_terms_of_homequivalences}{}\subsubsection*{{In terms of hom-equivalences}}\label{in_terms_of_homequivalences} \begin{defn} \label{}\hypertarget{}{} \textbf{(in terms of hom equivalence induced by unit map)} A pair of [[(∞,1)-functors]] \begin{displaymath} C \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} D \end{displaymath} is an adjunction, if there exists a \emph{unit transformation} $\epsilon : Id_D \to R \circ L$ -- a morphism in the [[(∞,1)-category of (∞,1)-functors]] $Func(D,D)$ -- such that for all $d \in D$ and $c \in C$ the induced morphism \begin{displaymath} Hom_C(L(d),c) \stackrel{R_{L(d), c}}{\to} Hom_D(R(L(d)), R(c)) \stackrel{Hom_D(\epsilon, R(c))}{\to} Hom_D(d,R(c)) \end{displaymath} is an [[equivalence of ∞-groupoids]]. \end{defn} In terms of the concrete incarnation of the notion of $(\infty,1)$-category by the notion of [[quasi-category]], we have that $Hom_C(L(d),c)$ and $Hom_D(d,R(c))$ are incarnated as [[hom-object in a quasi-category|hom-objects in quasi-categories]], which are [[Kan complexes]], and the above equivalence is a [[homotopy equivalence]] of Kan complexes. In this form this definition appears as [[Higher Topos Theory|HTT, def. 5.2.2.7]]. \hypertarget{InTermsOfCographsHeteromorphisms}{}\subsubsection*{{In terms of cographs / heteromorphisms}}\label{InTermsOfCographsHeteromorphisms} We discuss here the quasi-category theoretic analog of \emph{\href{cograph+of+a+functor#AdjointFunctorsInTermsOfCographs}{Adjoint functors in terms of cographs}} ([[heteromorphisms]]). We make use here of the explicit realization of the [[(∞,1)-Grothendieck construction]] in its incarnation for [[quasi-categories]]: here an [[(∞,1)-functors]] $L : D \to C$ may be regarded as a map $\Delta[1]^{op} \to$ [[(∞,1)Cat]], which corresponds under the Grothendieck construction to a [[Cartesian fibration]] of [[simplicial sets]] $coGraph(L) \to \Delta[1]$. \begin{defn} \label{}\hypertarget{}{} \textbf{(in terms of Cartesian/coCartesian fibrations)} Let $C$ and $D$ be [[quasi-categories]]. An \textbf{adjunction} between $C$ and $D$ is \begin{itemize}% \item a morphism $K \to \Delta[1]$ of [[simplicial sets]], which is both a [[Cartesian fibration]] as well as a coCartesian fibration. \item together with [[equivalence of quasi-categories]] $C \stackrel{\simeq}{\to} K_{\{0\}}$ and $D \stackrel{\simeq}{\to} K_{\{1\}}$. \end{itemize} Two [[(∞,1)-functors]] $L : C \to D$ and $R : D \to C$ are called \textbf{adjoint} -- with $L$ \emph{left adjoint} to $R$ and $R$ \emph{right adjoint} to $L$ if \begin{itemize}% \item there exists an adjunction $K \to I$ in the above sense \item and $L$ and $K$ are the the Cartesian fibation $p \colon K \to \Delta[1]$ and the Cartesian fibration $p^{op} : K^{op} \to \Delta[1]^{op}$, respectively. \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The two different definition above are indeed equivalent: \begin{prop} \label{}\hypertarget{}{} For $C$ and $D$ [[quasi-categories]], the two definitions of adjunction, in terms of Hom-equivalence induced by unit maps and in terms of Cartesian/coCartesian fibrations are equivalent. \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 5.2.2.8]]. First we discuss how to produce the unit for an adjunction from the data of a correspondence $K \to \Delta[1]$ that encodes an $\infty$-adjunction $(f \dashv g)$. For that, define a morphism $F' : \Lambda[2]_2 \times C \to K$ as follows: \begin{itemize}% \item on $\{0,2\}$ it is the morphism $F : C \times \Delta[1] \to K$ that exhibits $f$ as associated to $K$, being $Id_C$ on $C \times \{0\}$ and $f$ on $C \times \{2\}$; \item on $\{1,2\}$ it is the morphism $C \times \Delta[1] \stackrel{f \times Id}{\to} D \times \Delta[1] \stackrel{G}{\to} K$, where $G$ is the morphism that exhibits $g$ as associated to $K$; \end{itemize} Now observe that $F'$ in particular sends $\{1,2\}$ to [[Cartesian morphism]]s in $K$ (by definition of functor associated to $K$). By one of the equivalent characterizations of [[Cartesian morphism]]s, this means that the lift in the diagram \begin{displaymath} \itexarray{ \Lambda[2]_2 &\stackrel{F'}{\to}& K \\ \downarrow &{}^{F''}\nearrow& \downarrow \\ \Delta[2] \times C &\to & \Delta[1] } \end{displaymath} exists. This defines a morphism $C \times \{0,1\} \to K$ whose components may be regarded as forming a [[natural transformation]] $u : d_C \to g \circ f$. To show that this is indeed a unit transformation, we need to show that the maps of [[hom-object in a quasi-category]] for all $c \in C$ and $d \in D$ \begin{displaymath} Hom_D(f(f), d) \to Hom_C(g(f(c)), g(d)) \to Hom_C(c, g(d)) \end{displaymath} is an equivalence, hence an isomorphism in the [[homotopy category]]. Once checks that this fits into a commuting diagram \begin{displaymath} \itexarray{ Hom_D(f(c), d) &\to& Hom_C(g(f(c)), g(d)) &\to& Hom_C(c, g(d)) \\ \downarrow &&&& \downarrow \\ Hom_K(C,D) &&=&& Hom_K(C,D) } \,. \end{displaymath} For illustration, chasing a morphism $f(c) \to d$ through this diagram yields \begin{displaymath} \itexarray{ (f(c) \to d) &\mapsto& (g(f(c)) \to g(d)) &\mapsto& (c \to g(f(c)) \to g(d)) \\ \downarrow && && \downarrow \\ (c \to g(f(c)) \to f(c) \to d) &&=&& (c \to g(f(c)) \to g(d) \to d) } \,, \end{displaymath} where on the left we precomposed with the Cartesian morphism \begin{displaymath} \itexarray{ && g(f(c)) \\ & \nearrow &\Downarrow^{\simeq}& \searrow \\ c &&\to&& f(c) } \end{displaymath} given by $F''|_{c} : \Delta[2] \to K$, by \ldots{} \end{proof} \hypertarget{uniqueness_of_adjoints}{}\subsubsection*{{Uniqueness of adjoints}}\label{uniqueness_of_adjoints} The adjoint of a functor is, if it exists, essentially unique: \begin{prop} \label{}\hypertarget{}{} If the $(\infty,1)$-functor between quasi-categories $L : D \to C$ admits a right adjoint $R : C \to D$, then this is unique up to homotopy. Moreover, even the choice of homotopy is unique, up to ever higher homotopy, i.e. the collection of all right adjoints to $L$ forms a [[contractible]] [[∞-groupoid]], in the following sense: Let $Func^L(C,D), Func^R(C,D) \subset Func(C,D)$ be the full sub-quasi-categories on the [[(∞,1)-category of (∞,1)-functors]] between $C$ and $D$ on those functors that are left adjoint and those that are right adjoints, respectively. Then there is a canonical [[equivalence of quasi-categories]] \begin{displaymath} Func^L(C,D) \stackrel{\simeq}{\to} Func^R(D,C)^{op} \end{displaymath} (to the [[opposite quasi-category]]), which takes every left adjoint functor to a corresponding right adjoint. \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 5.2.1.3]] (also remark 5.2.2.2), and [[Higher Topos Theory|HTT, prop. 5.2.6.2]]. \end{proof} \hypertarget{PresOfLims}{}\subsubsection*{{Preservation of limits and colimits}}\label{PresOfLims} Recall that for $(L \dashv R)$ an ordinary pair of [[adjoint functor]]s, the fact that $L$ preserves [[colimit]]s (and that $R$ preserves [[limit]]s) is a formal consequence of \begin{enumerate}% \item the hom-isomorphism $Hom_C(L(-),-) \simeq Hom_D(-,R(-))$; \item the fact that $Hom_C(-,-) : C^{op} \times C \to Set$ preserves all limits in both arguments; \item the [[Yoneda lemma]], which says that two objects are isomorphic if all homs out of (into them) are. \end{enumerate} Using this one computes for all $c \in C$ and diagram $d : I \to D$ \begin{displaymath} \begin{aligned} Hom_C(L(\lim_{\to} d_i), c) & \simeq Hom_D(\lim_\to d_i, R(c)) \\ & \simeq \lim_{\leftarrow} Hom_D(d_i, R(c)) \\ & \simeq \lim_{\leftarrow} Hom_C(L(d_i), c) \\ & \simeq Hom_C(\lim_{\to} L(d_i), c) \,, \end{aligned} \end{displaymath} which implies that $L(\lim_\to d_i) \simeq \lim_\to L(d_i)$. Now to see this in $(\infty,1)$-category theory (\ldots{}) HTT Proposition 5.2.3.5 \hypertarget{OnHomotopyCat}{}\subsubsection*{{Adjunctions on homotopy categories}}\label{OnHomotopyCat} \begin{prop} \label{}\hypertarget{}{} For $(L \dashv R) : C \stackrel{\leftarrow}{\to} D$ an $(\infty,1)$-adjunction, its image under decategorifying to [[homotopy category of an (infinity,1)-category|homotopy categories]] is a pair of ordinary [[adjoint functor]]s \begin{displaymath} (Ho(L) \dashv Ho(R)) : Ho(C) \stackrel{\leftarrow}{\to} Ho(D) \,. \end{displaymath} \end{prop} \begin{proof} This is [[Higher Topos Theory|HTT, prop 5.2.2.9]]. This follows from that fact that for $\epsilon : Id_C \to R \circ L$ a unit of the $(\infty,1)$-adjunction, its image $Ho(\epsilon)$ is a unit for an ordinary adjunction. \end{proof} \begin{remark} \label{}\hypertarget{}{} The converse statement is in general false. One way to find that an ordinary adjunction of homotopy categories lifts to an $(\infty,1)$-adjunction is to exhibit it as a [[Quillen adjunction]] between [[simplicial model category]]-structures. This is discussed in the Examples-section \hyperlink{SimplicialAndDerived}{Simplicial and derived adjunction} below. \end{remark} \hypertarget{FullAndFaithfulAdjoints}{}\subsubsection*{{Full and faithful adjoints}}\label{FullAndFaithfulAdjoints} As for ordinary [[adjoint functors]] we have the following relations between full and faithful adjoints and idempotent monads. \begin{prop} \label{}\hypertarget{}{} Given an $(\infty,1)$-adjunction $(L \dashv R) : C \to D$ \begin{itemize}% \item $R$ is a [[full and faithful (∞,1)-functor]] precisely is the counit $L R \stackrel{}{\to} Id$ is an [[equivalence of quasi-categories|equivalence]] of [[(∞,1)-functor]] In this case $C$ is a [[reflective (∞,1)-subcategory]] of $D$. \item $L$ is a [[full and faithful (∞,1)-functor]] precisely is the unit $Id \to L R$ is an [[equivalence of quasi-categories|equivalence]] of [[(∞,1)-functors]]. \end{itemize} \end{prop} \hyperlink{Lurie}{Lurie, prop. 5.2.7.4}, See also top of p. 308. \hypertarget{OnSlices}{}\subsubsection*{{On over-$(\infty,1)$-categories}}\label{OnSlices} \begin{prop} \label{}\hypertarget{}{} Let \begin{displaymath} (L \dashv R) : D \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} C \end{displaymath} be a pair of adjoint $(\infty,1)$-functors where the $(\infty,1)$-category $C$ has all [[(∞,1)-pullback]]s. Then for every object $X \in C$ there is induced a pair of adjoint $(\infty,1)$-functors between the [[over-(∞,1)-categories]] \begin{displaymath} (L/X \dashv R/X) : D/(L X) \stackrel{\overset{L/X}{\leftarrow}}{\underset{R/X}{\to}} C/X \end{displaymath} where \begin{itemize}% \item $L/X$ is the evident induced functor; \item $R/X$ is the composite \begin{displaymath} R/X : D/{L X} \stackrel{R}{\to} C/{(R L X)} \stackrel{i_{X}^*}{\to} C/X \end{displaymath} of the evident functor induced by $R$ with the [[(∞,1)-pullback]] along the $(L \dashv R)$-[[unit of an adjunction|unit]] at $X$. \end{itemize} \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.2.5.1]]. \hypertarget{UniversalArrows}{}\subsubsection*{{In terms of universal arrows}}\label{UniversalArrows} \begin{prop} \label{UnivArr}\hypertarget{UnivArr}{} An $(\infty,1)$-functor $G:D\to C$ admits a left adjoint if and only if for each $X\in C$, the [[comma (infinity,1)-category]] $(X \downarrow G)$ has an [[initial object in an (infinity,1)-category|initial object]], i.e. every object $X\in C$ admits a [[universal arrow]] $X\to G F X$ to $G$. \end{prop} This is stated explicitly as \hyperlink{RVElements}{Riehl-Verity, Corollary 16.2.7}, and can be extracted with some work from [[Higher Topos Theory|HTT, Proposition 5.2.4.2]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} A large class of examples of $(\infty,1)$-adjunctions arises from [[Quillen adjunctions]] of [[model categories]], or adjunctions in [[sSet]]-[[enriched category theory]]. \hypertarget{quillen_adjunctions}{}\subsubsection*{{Quillen adjunctions}}\label{quillen_adjunctions} Any [[Quillen adjunction]] induces an adjunction of [[(infinity,1)-categories]] on the [[simplicial localizations]]. See \hyperlink{Hinich14}{Hinich 14} or \hyperlink{MazelGee15}{Mazel-Gee 15}. \hypertarget{SimplicialAndDerived}{}\subsubsection*{{Simplicial and derived adjunctions}}\label{SimplicialAndDerived} We want to produce Cartesian/coCartesian fibration $K \to \Delta[1]$ from a given [[sSet]]-[[enriched category theory|enriched]] adjunction. For that first consider the following characterization \begin{lemma} \label{}\hypertarget{}{} Let $K$ be a [[simplicially enriched category]] whose [[hom-objects]] are all [[Kan complexes]], regard the [[interval category]] $\Delta[1] := \{0 \to 1\}$ as an $sSet$-category in the obvious way using the embedding $const : Set \hookrightarrow sSet$ and consider an $sSet$-enriched functor $K \to \Delta[1]$. Let $C := K_0$ and $D := K_1$ be the $sSet$-enriched categories that are the fibers of this. Then under the [[homotopy coherent nerve]] $N : sSet Cat \to sSet$ the morphism \begin{displaymath} N(p) : N(K) \to \Delta[1] \end{displaymath} is a [[Cartesian fibration]] precisely if for all objects $d \in D$ there exists a morphism $f : c \to d$ in $K$ such that postcomposition with this morphism \begin{displaymath} C(c',f ) : C(c',c) = K(c',c) \to K(c',d) \end{displaymath} is a [[homotopy equivalence]] of [[Kan complex]]es for all objects $c' \in C'$. \end{lemma} This appears as [[Higher Topos Theory|HTT, prop. 5.2.2.4]]. \begin{proof} The statement follows from the characterization of [[Cartesian morphism]]s under homotopy coherent nerves ([[Higher Topos Theory|HTT, prop. 2.4.1.10]]), which says that for an $sSet$-enriched functor $p : C \to D$ between Kan-complex enriched categories that is [[hom-object]]-wise a [[Kan fibration]], a morphim $f : c' \to c''$ in $C$ is an $N(p)$-[[Cartesian morphism]] if for all objects $c \in C$ the diagram \begin{displaymath} \itexarray{ C(c,c') &\stackrel{C(c,f)}{\to}& C(c,c'') \\ \downarrow^{\mathrlap{p_{c,c'}}} && \downarrow^{\mathrlap{p_{c,c''}}} \\ D(p(c),p(c')) &\stackrel{D(p(c),p(f))}{\to}& D(p(c), p(c'')) } \end{displaymath} is a [[homotopy pullback]] in the [[model structure on sSet-categories]]. For the case under consideration the functor in question is $p : K \to \Delta[1]$ and the above diagram becomes \begin{displaymath} \itexarray{ K(c,c') &\stackrel{K(c,f)}{\to}& K(c,c'') \\ \downarrow && \downarrow \\ * &\to& * } \,. \end{displaymath} This is clearly a homotopy pullback precisely if the top morphism is an equivalence. \end{proof} Using this, we get the following. \begin{prop} \label{}\hypertarget{}{} For $C$ and $D$ [[sSet]]-[[enriched categories]] whose hom-objects are all [[Kan complexes]], the image \begin{displaymath} N(C) \stackrel{\overset{N(L)}{\to}}{\underset{N(R)}{\leftarrow}} N(D) \end{displaymath} under the [[homotopy coherent nerve]] of an [[sSet]]-enriched adjunction between $sSet$-[[enriched categories]] \begin{displaymath} C \stackrel{\overset{L}{\to}}{\underset{R}{\leftarrow}} D \end{displaymath} is an adjunction of [[quasi-categories]]. Moreover, if $C$ and $D$ are equipped with the structure of a [[simplicial model category]] then the quasi-categorically [[derived functors]] \begin{displaymath} N(C^\circ) \stackrel{\overset{L}{\to}}{\underset{R}{\leftarrow}} N(D^\circ) \end{displaymath} form an adjunction of quasi-categories. \end{prop} \begin{proof} The first part is [[Higher Topos Theory|HTT, cor. 5.2.4.5]], the second [[Higher Topos Theory|HTT, prop. 5.2.4.6]]. To get the first part, let $K$ be the $sSet$-category which is the join of $C$ and $D$: its set of objects is the disjoint union of the sets of objects of $C$ and $D$, and the [[hom-object]]s are \begin{itemize}% \item for $c,c' \in C$: $K(c,c') := C(c,c')$; \item for $d,d' \in D$: $K(d,d') := D(d,d')$; \item for $c \in C$ and $d \in D$: $K(c,d) := C(L(c),d) = D(c,R(d))$; and $K(d,c) = \emptyset$ \end{itemize} and equipped with the evident composition operation. Then for every $d \in D$ there is the morphism $Id_{R(d)} \in K(R(d),d)$, composition with which induced an isomorphism and hence an equivalence. Therefore the conditions of the above lemma are satisfied and hence $N(K) \to \Delta[1]$ is a [[Cartesian fibration]]. By the analogous dual argument, we find that it is also a coCartesian fibration and hence an adjunction. For the second statement, we need to refine the above argument just slightly to pass to the full $sSet$-subcategories on fibrant cofibrant objects: let $K$ be as before and let $K^\circ$ be the full $sSet$-subcategory on objects that are fibrant-cofibrant (in $C$ or in $D$, respectively). Then for any fibrant cofibrant $d \in D$, we cannot just use the identity morphism $Id_{R(d)} \in K(R(d),d)$ since the right Quillen functor $R$ is only guaranteed to respect fibrations, not cofibrations, and so $R(d)$ might not be in $K^\circ$. But we can use the [[small object argument]] to obtain a functorial cofibrant replacement functor $Q : C \to C$, such that $Q(R(d))$ is cofibrant and there is an acyclic fibration $Q(R(d)) \to R(d)$. Take this to be the morphism in $K(Q(R(d)), d)$ that we pick for a given $d$. Then this does induce a homotopy equivalence \begin{displaymath} C(c', Q(R(d))) \to C(c',R(d)) = K(c',d) \end{displaymath} because in an [[enriched model category]] the enriched hom out of a cofibrant object preserves weak equivalences between fibrant objects. \end{proof} \hypertarget{localizations}{}\subsubsection*{{Localizations}}\label{localizations} A pair of adjoint $(\infty,1)$-functors $(L \dashv R) : C \stackrel{\leftarrow}{\hookrightarrow} D$ where $R$ is a [[full and faithful (∞,1)-functor]] exhibits $C$ as a [[reflective (∞,1)-subcategory]] of $D$. This subcategory and the composite $R \circ L : D \to D$ are a [[localization of an (∞,1)-category|localization]] of $D$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[adjoint functor]], [[adjoint triple]], [[adjoint quadruple]] \item [[proadjoint]], [[Hopf adjunction]] \item [[2-adjunction]] [[biadjunction]], [[lax 2-adjunction]], [[pseudoadjunction]] \item \textbf{adjoint $(\infty,1)$-functor} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 5.2 in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} A study of adjoint functors between [[quasi-categories]] is given in \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{The 2-category theory of quasi-categories} (\href{http://arxiv.org/abs/1306.5144}{arXiv:1306.5144}), \end{itemize} and further discussion, including also that of [[(infinity,1)-monads]] is in \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{Homotopy coherent adjunctions and the formal theory of monads}, Advances in Mathematics, Volume 286, 2 January 2016, Pages 802-888 (\href{http://arxiv.org/abs/1310.8279}{arXiv:1310.8279}, \href{https://doi.org/10.1016/j.aim.2015.09.011}{doi:10.1016/j.aim.2015.09.011}) \end{itemize} A textbook development in the context of [[infinity-cosmoi]] can be found in \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{Elements of $\infty$-category theory}, \href{http://www.math.jhu.edu/~eriehl/elements.pdf}{pdf} \end{itemize} The proof that a [[Quillen adjunction]] of [[model categories]] induces an adjunction of [[(∞,1)-categories]] is recorded in \begin{itemize}% \item [[V. Hinich]], \emph{Dwyer-Kan localization revisited}, \href{http://arxiv.org/abs/1311.4128}{arXiv:1311.4128}. \end{itemize} and also in \begin{itemize}% \item [[Aaron Mazel-Gee]], \emph{Quillen adjunctions induce adjunctions of quasicategories}, \href{http://arxiv.org/abs/1501.03146}{arXiv:1501.03146}. \end{itemize} [[!redirects adjoint (infinity,1)-functors]] [[!redirects adjoint (∞,1)-functor]] [[!redirects adjoint (∞,1)-functors]] [[!redirects adjoint ∞-functor]] [[!redirects adjoint ∞-functors]] [[!redirects (∞,1)-adjunction]] [[!redirects (∞,1)-adjunctions]] [[!redirects adjunction of (infinity,1)-categories]] [[!redirects adjunctions of (infinity,1)-categories]] [[!redirects adjunction of (∞,1)-categories]] [[!redirects adjunctions of (∞,1)-categories]] [[!redirects adjoint infinity-functor]] [[!redirects adjoint infinity-functors]] \end{document}