\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adjoint equivalence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{equality_and_equivalence}{}\paragraph*{{Equality and Equivalence}}\label{equality_and_equivalence} [[!include equality and equivalence - contents]] \hypertarget{adjoint_equivalences}{}\section*{{Adjoint equivalences}}\label{adjoint_equivalences} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{intervals_in_homotopy_theory}{Intervals in homotopy theory}\dotfill \pageref*{intervals_in_homotopy_theory} \linebreak \noindent\hyperlink{defining_tricategories}{Defining tricategories}\dotfill \pageref*{defining_tricategories} \linebreak \noindent\hyperlink{cartesian_closed_2categories}{Cartesian closed 2-categories}\dotfill \pageref*{cartesian_closed_2categories} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An adjoint equivalence is a more ``coherent'' or ``structured'' notion of [[equivalence]], in which the [[2-morphism|2-]][[isomorphism]]s relating composites to identities are required to satisfy [[coherence law]]s (the [[zigzag identities]] for an [[adjunction]]). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An \textbf{adjoint equivalence} between [[categories]] is an [[adjunction]] $f\dashv g$ in which the [[unit of an adjunction|unit]] $\eta$ and [[unit of an adjunction|counit]] $\varepsilon$ are [[natural isomorphisms]]. It follows that it is an [[equivalence of categories]]. There is an identical definition internal to any [[2-category]], which reproduces the above notion when applied in [[Cat]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} We work in any 2-category. First, we observe: \begin{lemma} \label{}\hypertarget{}{} If $(f,g,\eta,\varepsilon)$ is an adjoint equivalence, then so is $(g,f,\varepsilon^{-1},\eta^{-1})$. \end{lemma} Therefore, in an adjoint equivalence, each functor is both the [[left adjoint]] and the [[right adjoint]] of the other (i.e. it is an [[ambidextrous adjunction]]). The definition as given above is also redundant: \begin{lemma} \label{}\hypertarget{}{} If $(f,g,\eta,\varepsilon)$ is any equivalence, then it satisfies one [[zigzag identity]] iff it satisfies the other. \end{lemma} \begin{proof} Using [[string diagram]] notation, with strings progressing up the page and 1-morphisms progressing from left to right, we can draw the data of an equivalence (omitting labels for the regions denoting objects) as follows: [[!include equivalence data - SVG]] If we now suppose that one zigzag identity holds: [[!include zigzag identity 1 - SVG]] then we can verify the other as follows. (The first step uses the inverse of the first zigzag identity.) [[!include zigzag identity 1 implies 2 - SVG]] \end{proof} Furthermore, although an adjoint equivalence is a ``stronger'' or ``more structured'' notion than a mere equivalence, the property of ``being adjoint equivalent'' is no stronger a condition than ``being equivalent,'' since every equivalence may be refined to an adjoint equivalence by modifying one of the natural isomorphisms involved. More specifically: \begin{theorem} \label{}\hypertarget{}{} If $f\colon X\to Y$ is a morphism which is an equivalence, then given any morphism $g\colon Y\to X$ and any isomorphism $\eta\colon 1 \cong g f$, there exists a unique 2-isomorphism $\varepsilon\colon f g \cong 1$ such that $(f,g,\eta,\varepsilon)$ is an adjoint equivalence. \end{theorem} \begin{proof} Since $f$ is an equivalence, there exists a $g'$ and isomorphisms $f g' \cong 1$ and $1\cong g' f$. However, we also have $g \cong g f g' \cong g'$, so the isomorphism $f g' \cong 1$ also induces an isomorphism $f g\cong 1$, which we denote $\xi$. Now $\eta$ and $\xi$ may not satisfy the zigzag identities, but if we define $\varepsilon$ as follows: \begin{displaymath} f g \xrightarrow{f g \xi^{-1}} f g f g \xrightarrow{f \eta^{-1} g} f g \xrightarrow{\xi} 1 \end{displaymath} then we can verify, using string diagram notation as above, that $\varepsilon$ satisfies one zigzag identity, and hence (by the previous lemma) also the other: [[!include adjointification zigzag identity - SVG]] Finally, if $\varepsilon'\colon f g \to 1$ is any other isomorphism satisfying the zigzag identities with $\eta$, then we have \begin{displaymath} \varepsilon' = \varepsilon' . (\varepsilon f g) . (f \eta g) = \varepsilon . (f g \varepsilon') . (f \eta g) = \varepsilon \end{displaymath} using the [[interchange law]] and two zigzag identities. This shows uniqueness. \end{proof} In [[Categories Work]], IV.4, there is a different proof of the weaker fact that if a [[functor]] $f$ is part of an equivalence, then it is part of an adjoint equivalence. This proof is given in [[Cat]], but can be applied representably to any 2-category. Since adjoints are unique up to unique isomorphism when they exist, it follows that any adjunction involving one functor which is an equivalence must be an adjoint equivalence. Therefore, for a fixed morphism $f$, the ``category of adjoint equivalence data $(f,g,\eta,\varepsilon)$'' is either empty (if $f$ is not an equivalence) or equivalent to the [[terminal category]] (if $f$ is an equivalence). In other words, it is a [[(-1)-category]]. Therefore, in any 2-category, the following data are all equivalent (i.e. form equivalent categories): \begin{itemize}% \item A morphism $f\colon X\to Y$ with the [[property]] of being an equivalence. \item A morphism $f\colon X\to Y$ with the \emph{structure} of a morphism $g\colon Y \to X$ and an isomorphism $\eta\colon 1 \cong g f$, together with the \emph{property} that there exists an isomorphism $f g \cong 1$. \item A morphism $f$ together with the structure of adjoint equivalence data $(f,g,\eta,\varepsilon)$. \end{itemize} In other words, adjoint equivalences are the way to make the property of ``being an equivalence'' completely into ``algebraic'' structure. However, they are \emph{not} equivalent to the category of the following data: \begin{itemize}% \item A morphism $f$ together with the structure of a morphism $g\colon Y \to X$ and arbitrary isomorphisms $\eta\colon 1 \cong g f$ and $\varepsilon\colon f g \cong 1$. \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{intervals_in_homotopy_theory}{}\subsubsection*{{Intervals in homotopy theory}}\label{intervals_in_homotopy_theory} One instance of the usefulness of adjoint equivalences is that the ``[[walking structure|walking]] adjoint equivalence'' 2-category is equivalent to the [[point]]. Thus, it can be used as an [[interval object]] in $2Cat$, and in fact it is one of the generating cofibrations for the [[canonical model structure|canonical (Lack) model structure]] on $2Cat$. This is not true of the ``walking non-adjoint equivalence.'' \hypertarget{defining_tricategories}{}\subsubsection*{{Defining tricategories}}\label{defining_tricategories} The original definition of [[tricategory]] by Gordon-Power-Street involved coherence 2-morphisms with the property of being equivalences in the relevant hom-bicategories. This is fine for most purposes, but for others it is insufficient, such as the following. \begin{itemize}% \item Since ``being an equivalence'' is not algebraic structure, the GPS definition of tricategory, taken literally, is not an algebraic structure. In particular, it is not [[monadic functor|monadic]] over 3-[[globular sets]], nor is it the algebras for a [[globular operad]]. Such monadicity is important if one wants to state [[coherence theorems]] as properties of [[free object|free]] structures. \item The definition of 3-functors and higher [[transfors]] between tricategories include data and axioms that involve composites incorporating not just the coherence equivalences, but their pseudo-inverses. Therefore, strictly speaking these definitions are not well-defined unless the definition of tricategory comes with chosen pseudo-inverses for these coherence equivalences---in which case one should certainly also choose full adjoint equivalence data in order that the space of choices be contractible. \end{itemize} These problems are, of course, easy to remedy by simply requiring adjoint equivalence data rather than merely single equivalence morphisms. This change was first written down by Gurski. \hypertarget{cartesian_closed_2categories}{}\subsubsection*{{Cartesian closed 2-categories}}\label{cartesian_closed_2categories} In a [[cartesian closed category]] with [[equalizers]], for any two objects $X$ and $Y$ one can construct the ``object of isomorphisms from $X$ to $Y$'' as the following equalizer: \begin{displaymath} Iso(X,Y) \to X^Y \times Y^X \;\rightrightarrows\; X^X \times Y^Y \end{displaymath} where the top arrow on the right side is (composition, reversed composition) and the bottom arrow factors through $(id,id)\colon 1 \to X^X \times Y^Y$. One can then prove that the maps $Iso(X,Y)\to X^Y$ and $Iso(X,Y)\to Y^X$ are monic, so that $Iso(X,Y)$ can be regarded either as ``the object of maps $X\to Y$ which are isomorphisms'' or ``the object of maps $Y\to X$ which are isomorphisms'' (or, as is most evident from its construction, ``the object of pairs of maps $X\to Y$ and $Y\to X$ which are inverse isomorphisms''). In a [[cartesian closed 2-category]], however, the analogous ``2-equalizer'' $Eqv(X,Y)$, does not have similar properties: the projections $Eqv(X,Y)\to X^Y$ and $Eqv(X,Y)\to Y^X$ will not in general be [[fully faithful morphism|fully faithful]]. Thus, we can only regard $Eqv(X,Y)$ as ``the object of not-necessarily-adjoint equivalence data $(f,g,\eta,\varepsilon)$.'' However, if we use a further [[equifier]] to construct its ``subobject of adjoint equivalence data'' $AdjEqv(X,Y)$, then the projections $AdjEqv(X,Y)\to X^Y$ and $AdjEqv(X,Y)\to Y^X$ will be fully faithful, so that $AdjEqv(X,Y)$ can also be regarded as ``the object of maps $X\to Y$ which are equivalences'' and dually. \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} In [[higher category theory]], one expects to have a similar ``fully coherent'' notion of ``adjoint equivalence'' in any [[n-category]] or [[infinity-category]], and one hopes to prove a similar theorem that any [[equivalence]] can be refined to an adjoint equivalence. This is known to be true at least in the following cases: \begin{itemize}% \item For [[Gray-categories]], the statement and proof is in [[Steve Lack]]`s paper \href{http://arxiv.org/abs/1001.2366}{1001.2366} on the [[model structure for Gray-categories]]. See [[adjoint 2-equivalence]]. \item For [[tricategories]], the corresponding statement can be deduced from the Gray-categorical version using the [[coherence theorem for tricategories]]. A direct proof can also be found in [[Nick Gurski]]`s paper \href{http://www.tac.mta.ca/tac/volumes/26/14/26-14abs.html}{Biequivalences in tricategories}. \item For [[strict omega-categories]], more or less this fact can be found in the study of ``generic squares'' in the paper \href{http://arxiv.org/abs/0712.0617}{0712.0617} on the [[model structure for strict omega-categories]]. \item For [[quasicategories]], the theorem is true, where an ``adjoint equivalence'' means simply a map out of the [[nerve]] of the [[interval groupoid]]; see [[equivalence in a quasicategory]]. \end{itemize} [[!redirects adjoint equivalences]] [[!redirects adjoint equivalence of categories]] [[!redirects adjoint equivalences of categories]] \end{document}