\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adjoint quadruple} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{canonical_natural_transformation}{Canonical natural transformation}\dotfill \pageref*{canonical_natural_transformation} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An \textbf{adjoint quadruple} is a sequence of three [[adjunctions]] \begin{displaymath} f_! \dashv f^* \dashv f_* \dashv f^! \end{displaymath} between a [[quadruple]] of [[morphisms]]. That is, it is an [[adjoint string]] of length 4. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Every adjoint quadruple \begin{displaymath} (f_! \dashv f^* \dashv f_* \dashv f^!) : C \stackrel{\overset{f_!}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\stackrel{\overset{f_*}{\to}}{\underset{f^!}{\leftarrow}}}} D \end{displaymath} induces an [[adjoint triple]] on $C$ \begin{displaymath} (f^* f_! \dashv f^* f_* \dashv f^! f_*) : C \to C \,, \end{displaymath} (hence a [[monad]] [[left adjoint]] to a [[comonad]] left adjoint to a monad) and an adjoint triple \begin{displaymath} (f_! f^* \dashv f_* f^* \dashv f_* f^!) : D \to D \end{displaymath} on $D$. Since moreover every [[adjoint triple]] $(F \dashv G \dashv H)$ induces an [[adjoint functor|adjoint pair]] $(G F \dashv G H)$ and an adjoint pair $(F G \dashv H G)$, the adjoint quadruple above induces four adjoint pairs, such as \begin{displaymath} (f^* f_* f^* f_! \dashv f^* f_* f^! f_*) : C \to C \,. \end{displaymath} $\,$ \hypertarget{canonical_natural_transformation}{}\subsubsection*{{Canonical natural transformation}}\label{canonical_natural_transformation} Let \begin{displaymath} (p_! \dashv p^* \dashv p_*\dashv p^!) \;\colon\; \mathcal{E} \longrightarrow \mathcal{S} \end{displaymath} be an [[adjoint quadruple]] of [[adjoint functor]]s such that $p^*$ and $p^!$ are [[full and faithful functor]]s. We record some general properties of such a setup. We write \begin{displaymath} \eta \;\colon\; id \to p^* p_! \end{displaymath} etc. for [[unit of an adjunction|units]] and \begin{displaymath} \epsilon \;\colon\; p_! p^* \to id \end{displaymath} etc. for counits. \begin{prop} \label{TheCanonicalMorphisms}\hypertarget{TheCanonicalMorphisms}{} We have [[commuting diagrams]], [[natural transformation|natural]] in $X \in \mathcal{E}$, $S \in \mathcal{S}$ \begin{displaymath} \itexarray{ p_*X &\underoverset{\simeq}{\epsilon_{p^* X}^{-1}}{\longrightarrow}& p_! p^* p_*X \\ {}^{\mathllap{p_*(\eta_X)}}\downarrow &\searrow^{\mathrlap{\theta_X}}& \downarrow^{\mathrlap{p_!(\epsilon_X)}} \\ p_* p^* p_! X &\stackrel{\eta_{p_!X}^{-1}}{\longrightarrow}& p_! X } \end{displaymath} and \begin{displaymath} \itexarray{ p^* S &\stackrel{\eta_{p^* S}}{\longrightarrow}& p^! p_* p^* S \\ {}^{\mathllap{p^* \epsilon_S^{-1}}}\downarrow &\searrow^{\mathrlap{\phi_X}}& \downarrow^{\mathrlap{p^!(\eta_S^{-1})}} \\ p^* p_* p^!S &\stackrel{{\epsilon}_{p_!S }}{\longrightarrow}& p^!S } \,. \end{displaymath} where the diagonal morphisms \begin{displaymath} \theta_X : p_* X \to p_! X \end{displaymath} and \begin{displaymath} \phi_S : p^* S \to p^! S \end{displaymath} are defined to be the equal composites of the sides of these diagrams. \end{prop} This appears as (\hyperlink{Johnstone11}{Johnstone 11, lemma 2.1, corollary 2.2}). \begin{prop} \label{TheEpiAndTheMono}\hypertarget{TheEpiAndTheMono}{} The following conditions are equivalent: \begin{itemize}% \item for all $X \in \mathcal{E}$ the morphism $\theta_X : p_*X \to p_! X$ is an [[epimorphism]]; \item for all $S \in \mathcal{S}$,, the morphism $\phi_S : p^*S \to p^! S$ is a [[monomorphism]]; \item $p_*$ is [[faithful functor|faithful]] on morphisms of the form $A \to p^* S$. \end{itemize} \end{prop} This appears as (\hyperlink{Johnstone11}{Johnstone 11, lemma 2.3}). \begin{proof} By the above definition, $\phi_S$ is a [[monomorphism]] precisely if $\eta_{p^* S} : p^* S \to p^! p_* p^* S$ is. This in turn is so (see [[monomorphism]]) precisely if the first [[function]] in \begin{displaymath} \mathcal{E}(A,p^* X) \stackrel{(\eta_{p^* X}) \circ (-)}{\longrightarrow} \mathcal{E}(A, p^! p_* p^* S) \stackrel{\simeq}{\longrightarrow} \mathcal{S}(p_* A, p_* p^* S) \end{displaymath} and hence the composite is a monomorphism in [[Set]]. By definition of [[adjunct]] and using the $(p_* \dashv p^!)$-[[zig-zag identity]], this is equal to the action of $p_*$ on morphisms \begin{displaymath} (\eta_{p^* X}) \circ (-) : (A \to p^* S) \mapsto p_*(A \to p^* S) \,. \end{displaymath} Similarly, by the above definition the morphism $\theta_X$ is an epimorphism precisely if $p_!(\epsilon_X) : p_! p^* p_* X \to p_! X$ is so, which is the case precisely if the top morphism in \begin{displaymath} \itexarray{ \mathcal{S}(p_! X, S) &\stackrel{(-) \circ p_!(\epsilon_X)}{\longrightarrow} & \mathcal{S}(p_! p^* p_* X, S) \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ && \mathcal{E}(p^* p_* X, p^* S) \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\simeq}} \\ \mathcal{E}(X, p^* S) &\stackrel{p_*}{\longrightarrow}& \mathcal{S}(p_* X, p_* p^* S) } \end{displaymath} and hence the bottom morphism is a monomorphism in [[Set]], where again the commutativity of this diagram follows from the definition of [[adjunct]] and the $(p_! \dashv p^*)$-[[zig-zag identity]]. \end{proof} $\,$ \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{KanExtensionOfAdjointPairIsAdjointQuadruple}\hypertarget{KanExtensionOfAdjointPairIsAdjointQuadruple}{} \textbf{([[Kan extension]] of [[adjoint pair]] is [[adjoint quadruple]])} For $\mathcal{V}$ a [[symmetric monoidal category|symmetric]] [[closed monoidal category]] with all [[limits]] and [[colimits]], let $\mathcal{C}$, $\mathcal{D}$ be two [[small category|small]] $\mathcal{V}$-[[enriched categories]]and let \begin{displaymath} \mathcal{C} \underoverset {\underset{p}{\longrightarrow}} {\overset{q}{\longleftarrow}} {\bot} \mathcal{D} \end{displaymath} be a $\mathcal{V}$-[[enriched adjunction]]. Then there are $\mathcal{V}$-[[enriched natural isomorphisms]] \begin{displaymath} (q^{op})^\ast \;\simeq\; Lan_{p^{op}} \;\colon\; [\mathcal{C}^{op},\mathcal{V}] \longrightarrow [\mathcal{D}^{op},\mathcal{V}] \end{displaymath} \begin{displaymath} (p^{op})^\ast \;\simeq\; Ran_{q^{op}} \;\colon\; [\mathcal{D}^{op},\mathcal{V}] \longrightarrow [\mathcal{C}^{op},\mathcal{V}] \end{displaymath} between the precomposition on [[enriched presheaves]] with one functor and the left/right [[Kan extension]] of the other. By essential uniqueness of [[adjoint functors]], this means that the two [[Kan extension]] [[adjoint triples]] of $q$ and $p$ \begin{displaymath} \itexarray{ Lan_{q^{op}} &\dashv& (q^{op})^\ast &\dashv& Ran_{q^{op}} \\ && Lan_{p^{op}} &\dashv& (p^{op})^\ast &\dashv& Ran_{p^{op}} } \end{displaymath} merge into an [[adjoint quadruple]] \begin{displaymath} \itexarray{ Lan_{q^{op}} &\dashv& (q^{op})^\ast &\dashv& (p^{op})^\ast &\dashv& Ran_{p^{op}} } \;\colon\; [\mathcal{C}^{op},\mathcal{V}] \leftrightarrow [\mathcal{D}^{op}, \mathcal{V}] \end{displaymath} \end{example} \begin{proof} For every [[enriched presheaf]] $F \;\colon\; \mathcal{C}^{op} \to \mathcal{V}$ we have a sequence of $\mathcal{V}$-[[enriched natural isomorphism]] as follows \begin{displaymath} \begin{aligned} (Lan_{p^{op}} F)(d) & \simeq \int^{ c \in \mathcal{C} } \mathcal{D}(d,p(c)) \otimes F(c) \\ & \simeq \int^{ c \in \mathcal{C} } \mathcal{C}(q(d),c) \otimes F(c) \\ & \simeq F(q(d)) \\ & = \left( (q^{op})^\ast F\right) (d) \,. \end{aligned} \end{displaymath} Here the first step is the [[coend]]-formula for [[left Kan extension]] (\href{Kan+extension#PointwiseByCoEnds}{here}), the second step if the [[enriched adjunction]]-isomorphism for $q \dashv p$ and the third step is the [[co-Yoneda lemma]]. This shows the first statement, which, by essential uniqueness of adjoints, implies the following statements. \end{proof} \begin{itemize}% \item For [[cohesive topos]] by definition the terminal [[geometric morphism]] extends to an adjoint quadruple. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[adjunction]], [[adjoint functor]] \item [[adjoint triple]], [[adjoint string]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Johnstone]], \emph{Remarks on punctual local connectedness}, Theory and Applications of Categories, Vol. 25, 2011, No. 3, pp 51-63. (\href{http://www.tac.mta.ca/tac/volumes/25/3/25-03abs.html}{tac}) \end{itemize} [[!redirects adjoint quadruples]] \end{document}