\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adjoint string} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{adjoint_strings}{}\section*{{Adjoint strings}}\label{adjoint_strings} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In [[category theory]], an \textbf{adjoint string of length $n$}, or an \textbf{adjoint $n$-tuple}, is a sequence of $(n-1)$ [[adjunctions]] between $n$ [[functors]] (or more generally [[morphisms]] in a [[2-category]]): \begin{displaymath} f_1 \dashv f_2 \dashv \cdots \dashv f_n \end{displaymath} \hypertarget{special_cases}{}\subsection*{{Special cases}}\label{special_cases} \begin{itemize}% \item An adjoint $2$-tuple is just an ordinary [[adjunction]]. \item An adjoint $3$-tuple is an [[adjoint triple]]. \item An adjoint $4$-tuple is an [[adjoint quadruple]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item There is an adjoint $5$-tuple between $[Set^{op}, Set]$ and $Set$. Indeed, given a [[locally small category]] $B$, and the [[Yoneda embedding]], $y: B \to [B^{op}, Set]$, then $y$ being the rightmost functor of an adjoint $5$-tuple entails that $B$ is equivalent to [[Set]]; see \hyperlink{RWSets}{Rosebrugh-Wood}. \item For any category $C$, there is a functor $ids: C\to Ar(C)$ from $C$ to its [[arrow category]] that assigns the identity morphism of each object. This functor always has both a left and a right adjoint which assign the codomain and domain of an arrow respectively; thus we have an adjoint triple $cod \dashv ids \dashv dom$. If $C$ has an initial object $0$, then $cod$ has a further left adjoint $I$ assigning to each object $x$ the morphism $0\to x$; and dually if $C$ has a terminal object $1$ then $dom$ has a further right adjoint $T$ assigning to $x$ the morphism $x\to 1$. Thus if $C$ has an initial and terminal object, we have an adjoint $5$-tuple. \item Continuing from the last example, if $C$ is moreover a [[pointed category]] with [[pullbacks]] and [[pushouts]], then $I$ has a further left adjoint that constructs the [[cokernel]] of a morphism $x\to y$, i.e. the pushout of $y \leftarrow x \to 0$; and $T$ has a further right adjoint that constructs the [[kernel]] of a morphism $x \to y$, namely the pullback of $x\to y \leftarrow 0$. Thus we have an adjoint $7$-tuple. In fact, the existence of such an adjoint $7$-tuple characterizes pointed categories among categories with finite limits and colimits. \item The previous two examples apply also to [[derivators]], and the extension of the analogous adjoint $5$-tuple to a $7$-tuple again characterizes the [[pointed derivators]]. Moreover, the [[stable derivators]] are characterized by the extension of this $7$-tuple to a doubly-infinite adjoint string with period 6 (\hyperlink{GrothShul17}{GrothShul17}). \item Let $[n]$ denote the [[totally ordered]] $(n+1)$-element set, regarded as a category. For each positive integer $n$, we have $n+1$ order-preserving injections from $[n-1]$ to $[n]$, and $n$ order-preserving surjections from $[n]$ to $[n-1]$. Regarded as functors, these injections and surjections interleave to form an adjoint chain of length $2n + 1$. These categories, functors, and adjunctions form the [[simplex category]] [[simplex category\#As2Categories|regarded as a locally posetal 2-category]]; see below. \item Let $C$ be a category with a [[terminal object]] but no [[initial object]]. Then there are functors \begin{displaymath} \itexarray{ \delta_i \colon [n+1,C] \to [n,C] & 0\leq i \leq n; \\ \sigma_i\colon [n,C] \to [n+1,C] & 0\leq i \leq n } \end{displaymath} such that \begin{displaymath} \delta_0 \dashv \sigma_0 \dashv \cdots \dashv \delta_n \dashv \sigma_n \end{displaymath} is a maximal string of adjoint functors (all but $\sigma_n$ are obtained by applying $[-, C]$ to the simplex category example, and $\sigma_n$ exploits the presence of the terminal object of $C$). \item Generalizing the simplex category example: if $P$ is a [[lax idempotent monad]] with unit $u: 1 \to P$ and multiplication $m: P P \to P$ (so that $m \dashv u P$), then there is an adjoint string \begin{displaymath} P^{n-1} m \dashv P^{n-1} u P \dashv P^{n-2}m P \dashv \ldots \dashv m P^{n-1} \dashv u P^n \end{displaymath} of length $2 n + 1$, back and forth between $P^{n+1}$ and $P^n$. The example of $[n]$ and $[n+1]$ above is based on the fact that the [[simplex category]] $\Delta$, regarded as a locally posetal [[bicategory]], is the [[walking structure|walking]] lax idempotent monoid. \item Given an [[ambidextrous adjunction]], $F \dashv G$ and $G \dashv F$, we of course get an infinite adjoint string \begin{displaymath} \ldots \dashv F \dashv G \dashv F \dashv \ldots \end{displaymath} of period 2. \end{enumerate} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Bob Rosebrugh]] and R. J. Wood, \emph{Distributive Adjoint Strings}, Theory and Applications of Categories, Vol. 1, 1995, No. 6, pp 119-145, \href{http://www.tac.mta.ca/tac/volumes/1995/n6/1-06abs.html}{TAC} \item [[Bob Rosebrugh]] and R. J. Wood, \emph{An adjoint characterization of the category of sets}, Proc. Amer. Math. Soc. \textbf{122} (1994), 409-413, doi:\href{https://doi.org/10.1090/S0002-9939-1994-1216823-2}{10.1090/S0002-9939-1994-1216823-2} \end{itemize} \begin{itemize}% \item [[Moritz Groth]], [[Mike Shulman]], \emph{Generalized stability for abstract homotopy theories}, \href{https://arxiv.org/abs/1704.08084}{arXiv:1704.08084}. \end{itemize} [[!redirects adjoint string]] [[!redirects adjoint strings]] [[!redirects adjoint n-tuple]] [[!redirects adjoint n-tuples]] [[!redirects distributive adjoint string]] [[!redirects distributive adjoint strings]] [[!redirects adjoint quintuple]] [[!redirects adjoint quintuples]] \end{document}