\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{adjoint triple} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \begin{quote}% This entry is about the notion of \emph{adjoint triple} involving three functors. This is not to be confused with the notion of [[adjoint monads]], which were also sometimes called adjoint triples, with ``triple'' then being a synonym for ``monad''. However, an adjoint triple in the sense here does induce an [[adjoint monad]]! \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{FullyFaithFulAdjointTriples}{Fully faithful adjoint triples}\dotfill \pageref*{FullyFaithFulAdjointTriples} \linebreak \noindent\hyperlink{idempotent_adjoint_triples}{Idempotent adjoint triples}\dotfill \pageref*{idempotent_adjoint_triples} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{specific_examples}{Specific examples}\dotfill \pageref*{specific_examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{Defn}\hypertarget{Defn}{} An \textbf{adjoint triple} (of [[functors]] between [[categories]] or generally of [[1-morphisms]] in a [[2-category]]) \begin{displaymath} ( F\dashv G\dashv H) \colon C \longrightarrow D \end{displaymath} is a [[triple]] of [[functors]]/morphisms $F,H \colon C \to D$ and $G \colon D \to C$ together with [[adjunction]] data $F\dashv G$ and $G\dashv H$. That is, it is an [[adjoint string]] of length 3. \end{defn} \begin{prop} \label{AsAdjunctionOfAdjunctions}\hypertarget{AsAdjunctionOfAdjunctions}{} An adjoint triple $(F\dashv G\dashv H)$, def. \ref{Defn} is equivalently an [[adjoint pair]] in the 2-category whose morphisms are adjoint pairs in the original 2-category, hence an adjunction of adjunctions \begin{displaymath} (F \dashv G) \dashv (G \dashv H) \,. \end{displaymath} \end{prop} This fact plays an important role in \hyperlink{LicataShulman}{Licata-Shulman, 5.1}. Relatedly, it also appears in the characterization of certain kinds of [[geometric morphism]] (e.g. the [[local geometric morphism|local]] ones) in terms of adjunctions in the 2-category [[Topos]]. It may be suggestive to denote this like so \begin{displaymath} \itexarray{ F &\dashv& G \\ \bot && \bot \\ G &\dashv& H } \end{displaymath} such that the two adjoint pairs appear horizontally, while the second order adjunction between them runs vertically. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{note} \label{GIsBicontinuous}\hypertarget{GIsBicontinuous}{} The two adjunctions imply of course that $G$ preserves all [[limit]]s and [[colimit]]s that exist in $D$. \end{note} \begin{note} \label{AdjointPairFromAdjointTriple}\hypertarget{AdjointPairFromAdjointTriple}{} Every adjoint triple \begin{displaymath} (F \dashv G \dashv H) : C \to D \end{displaymath} gives rise to an [[adjunction|adjoint pair]] \begin{displaymath} (G F \dashv G H) : C \to C \end{displaymath} consisting of a [[monad]] $G F$ [[left adjoint]] to the [[comonad]] $G H$ on $C$; as well as an adjoint pair \begin{displaymath} ( F G \dashv H G ) : D \to D \,. \end{displaymath} \end{note} See [[adjoint monad]] for more. In general there is a duality (an anti[[equivalence of categories]]) between the category of monads having right adjoints and comonads having left adjoints. Note also that the [[algebra over a monad|algebras]] for a left-adjoint monad can be identified with the coalgebras for its right adjoint comonad. (Theorems 5.8.1 and 5.8.2 in (\hyperlink{SGL}{SGL}).) \hypertarget{FullyFaithFulAdjointTriples}{}\subsubsection*{{Fully faithful adjoint triples}}\label{FullyFaithFulAdjointTriples} \begin{prop} \label{FullyFaithful}\hypertarget{FullyFaithful}{} For an adjoint triple $F\dashv G\dashv H$ we have that $F$ is [[full and faithful functor|fully faithful]] precisely if $H$ is fully faithful. \end{prop} \begin{proof} By a basic of [[adjoint functors]] we have that \begin{itemize}% \item the [[left adjoint]] $F$ being full and faithful is equivalent to the [[unit of an adjunction|unit]] $Id \to G F$ being a [[natural isomorphism]]; \item the [[right adjoint]] $H$ being full and faithful is equivalent to the counit $G H \to Id$ being a [[natural isomorphism]]. \end{itemize} Moreover, by note \ref{AdjointPairFromAdjointTriple} and the fact that adjoints are unique up to isomorphism, we have that $G F$ is isomorphic to the identity precisely if $G H$ is. Finally, by a standard fact about [[adjoint functor]]s (for instance (\hyperlink{Elephant}{Elephant, lemma 1.1.1}) $G H$ is isomorphic to the identity precisely if it is so by the [[unit of an adjunction|adjunction unit]]. \end{proof} The preceeding proposition is [[folklore]]; perhaps its earliest appearance in print is (\hyperlink{DyckhoffTholen}{DT, Lemma 1.3}). A slightly shorter proof is in (\hyperlink{KellyLawvere}{KL, Prop. 2.3}). Both proofs explicitly exhibit an inverse to the counit $G H \to Id$ or the unit $Id \to G F$ given an inverse to the other (which could be extracted by [[beta-reduction|beta-reducing]] the above, slightly more abstract argument). It also appears in (\hyperlink{SGL}{SGL, Lemma 7.4.1}). In the situation of Proposition \ref{FullyFaithful}, we say that $F\dashv G \dashv H$ is a \textbf{fully faithful adjoint triple}. This is often the case when $D$ is a category of ``spaces'' structured over $C$, where $F$ and $H$ construct ``discrete'' and ``codiscrete'' spaces respectively. For instance, if $G\colon D\to C$ is a [[topological concrete category]], then it has both a left and right adjoint which are fully faithful. Not every fully faithful adjoint triple is a topological concrete category (among other things, $G$ need not be [[faithful functor|faithful]]), but they do exhibit certain similar phenomena. In particular, we have the following. \begin{prop} \label{FinalLifts}\hypertarget{FinalLifts}{} Suppose $(F \dashv G \dashv H) \colon C \to D$ is an adjoint triple in which $F$ and $H$ are fully faithful, and suppose that $C$ is [[cocomplete category|cocomplete]]. Then $G$ admits [[final lift|final lifts]] for [[small category|small]] $G$-structured [[sinks]]. \end{prop} \begin{proof} Let $\{G(S_i) \to X\}$ be a small sink in $C$, and consider the diagram in $D$ consisting of all the $S_i$, all the counits $\varepsilon\colon F G(S_i) \to S_i$ (where $F$ is the left adjoint of $G$), and all the images $F G(S_i) \to F(X)$ of the morphisms making up the sink. The colimit of this diagram is preserved by $G$ (since it has a right adjoint as well). But the image of the diagram consists essentially of just the sink itself (since $F$ is fully faithful, $G(\varepsilon)$ is an isomorphism), and its colimit is $X$; hence the colimit of the original diagram is a lifting of $X$ to $D$ (up to isomorphism). It is easy to verify that this lifting has the correct universal property. \end{proof} Thus, we can talk about objects of $D$ having the [[weak structure]] or [[strong structure]] induced by any small collection of maps. \begin{cor} \label{Fibration}\hypertarget{Fibration}{} In the situation of Proposition \ref{FinalLifts}, $G$ is a ([[Street fibration|Street]]) [[Grothendieck fibration|opfibration]]. If it is also an [[isofibration]], then it is a Grothendieck opfibration. \end{cor} \begin{proof} A final lift of a singleton sink is precisely an opcartesian arrow. \end{proof} Dually, of course, if $C$ is complete, then $G$ admits initial lifts for small $G$-structured cosinks and is a fibration. In particular, the proposition and its corollary apply to a [[cohesive topos]], and (suitably categorified) to a [[cohesive (∞,1)-topos]]. \hypertarget{idempotent_adjoint_triples}{}\subsubsection*{{Idempotent adjoint triples}}\label{idempotent_adjoint_triples} \begin{prop} \label{Idempotent}\hypertarget{Idempotent}{} For an adjoint triple $F\dashv G\dashv H$, the adjunction $F\dashv G$ is an [[idempotent adjunction]] if and only if the adjunction $G\dashv H$ is so. \end{prop} \begin{proof} The monad $G F$ is left adjoint to the comonad $H G$, with the structure maps being [[mates]]. Therefore, by a standard fact, the category of $G F$-algebras and the category of $H G$-coalgebras are isomorphic over their common base. However, $F\dashv G$ is idempotent precisely when $G F$ is an [[idempotent monad]], hence precisely when the forgetful functor of the category of $G F$-algebras is fully faithful, and dually for $G\dashv H$. Since the categories of algebras are isomorphic respecting their forgetful functors, one forgetful functor is fully faithful if and only if the other is. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{special_cases}{}\subsubsection*{{Special cases}}\label{special_cases} \begin{itemize}% \item If one of the two [[adjoint pairs]] induced from an adjoint triple involving identities, then the other exhibits an \emph{[[adjoint cylinder]]} / \emph{[[unity of opposites]]}. \item An adjoint triple $F\dashv G\dashv H$ is \textbf{Frobenius} if $F$ is naturally isomorphic to $H$. See [[Frobenius functor]]. \item An \emph{[[affine morphism]]} is an adjoint triple of functors in which the middle term is [[conservative functor|conservative]]. For example, any [[affine morphism of schemes]] induce an affine triples of functors among the categories of [[quasicoherent module]]s. \item An adjoint triple of functors among $A_\infty$- or [[triangulated functor]]s with certain additional structure is called \textbf{spherical} . See e.g. (\hyperlink{Anno}{Anno}). The main examples come from [[Serre functor]]s in a [[Calabi-Yau category]] context. \item A context of [[six operations]] $(f_! \dashv f^!)$, $(f^\ast \dashv f_\ast)$ induces an adjoint triple when either $f^! \simeq f^\ast$ or $f_! = f_\ast$. This is called a \emph{[[Wirthmüller context]]} or a \emph{[[Grothendieck context]]}, respectively. \end{itemize} \hypertarget{specific_examples}{}\subsubsection*{{Specific examples}}\label{specific_examples} \begin{itemize}% \item Given any [[ring]] [[homomorphism]] $f^\circ: R\to S$ (in commutative case dual to an [[affine morphism]] $f: Spec S\to Spec R$ of [[affine schemes]]), there is an adjoint triple $f^!\dashv f_*\dashv f^*$ where $f^*: {}_R Mod\to {}_S Mod$ is an [[extension of scalars]], $f_*: {}_S Mod\to {}_R Mod$ the restriction of scalars and $f^! : M\mapsto Hom_R ({}_R S, {}_R M)$ its [[coextension of scalars|right adjoint]]. This triple is affine in the above sense. \item If $T$ is a [[lax-idempotent 2-monad]], then a $T$-algebra $A$ has an adjunction $a : T A \rightleftarrows A : \eta_A$. If this extends to an adjoint triple with a further left adjoint to $a$, then $A$ is called a [[continuous algebra]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[adjoint quadruple]], [[adjoint string]] \item [[cohesive topos]] \item [[ambidextrous adjunction]] \item [[affine morphism]], [[affine localization]] \item [[Quillen adjoint triple]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Some remarks on adjoint triples are in \begin{itemize}% \item [[Peter Johnstone]], \emph{Remarks on punctual local connectedness} (\href{http://www.tac.mta.ca/tac/volumes/25/3/25-03abs.html}{tac}) \end{itemize} The [[modal type theory]] of adjoint triples is discussed in \begin{itemize}% \item [[Dan Licata]], [[Mike Shulman]], \emph{Adjoint logic with a 2-category of modes} (\href{http://dlicata.web.wesleyan.edu/pubs/ls15adjoint/ls15adjoint.pdf}{pdf}) \end{itemize} On spherical triples see \begin{itemize}% \item Rina Anno, \emph{Spherical functors}, (\href{http://arxiv.org/abs/0711.4409}{arxiv/0711.4409}). \end{itemize} Generalities are in \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} Proofs of the folklore Proposition \ref{FullyFaithful} can be found in \begin{itemize}% \item Roy Dyckhoff and [[Walter Tholen]], ``Exponentiable morphisms, partial products, and pullback complements'', JPAA 49 (1987), 103--116. \item [[G.M. Kelly]] and [[F.W. Lawvere]], ``On the complete lattice of essential localizations'', Bulletin de la Soci\'e{}t\'e{} Math\'e{}matique de Belgique, S\'e{}rie A, v. 41 no 2 (1989) 289--319. \item [[Saunders Mac Lane]] and [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]}, (1992) (Lemma 7.4.1). \end{itemize} Several lemmas concerning adjoint pairs and adjoint triples are included in \begin{itemize}% \item [[Alexander Rosenberg]], \emph{Noncommutative schemes}, Compos. Math. \textbf{112} (1998) 93--125, \href{http://dx.doi.org/10.1023/A:1000479824211}{doi} \end{itemize} together with geometric consequences. Note a somewhat nonstandard usage of terminology continuous functor (also flatness in the paper includes having right adjoint). [[!redirects adjoint triples]] [[!redirects fully faithful adjoint triple]] [[!redirects fully faithful adjoint triples]] [[!redirects adjunction of adjunctions]] [[!redirects adjunction between adjunctions]] \end{document}