\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{affine line} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{affine_line}{Affine line}\dotfill \pageref*{affine_line} \linebreak \noindent\hyperlink{MultiplicativeGroup}{Multiplicative group}\dotfill \pageref*{MultiplicativeGroup} \linebreak \noindent\hyperlink{AdditiveGroup}{Additive group}\dotfill \pageref*{AdditiveGroup} \linebreak \noindent\hyperlink{group_of_roots_of_unity}{Group of roots of unity}\dotfill \pageref*{group_of_roots_of_unity} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{Grading}{Grading}\dotfill \pageref*{Grading} \linebreak \noindent\hyperlink{tale_homotopy_type}{\'E{}tale homotopy type}\dotfill \pageref*{tale_homotopy_type} \linebreak \noindent\hyperlink{InternalFormulation}{Internal formulation}\dotfill \pageref*{InternalFormulation} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{projective_space}{Projective space}\dotfill \pageref*{projective_space} \linebreak \noindent\hyperlink{homotopy_theory}{$\mathbb{A}^1$-homotopy theory}\dotfill \pageref*{homotopy_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For every [[Lawvere theory]] $T$ containing the theory of [[abelian group]]s [[Isbell duality|Isbell dual]] [[sheaf topos]] over formal duals of $T$-algebras contains a canonical [[line object]] $\mathbb{A}^1$. For $T$ the theory of commutative [[ring]]s this is called the \emph{affine line} . \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{affine_line}{}\subsubsection*{{Affine line}}\label{affine_line} Let $k$ be a [[ring]], and $T$ the [[Lawvere theory]] of [[associative algebra]]s over $k$, such that the category of [[algebras over a Lawvere theory]] $T Alg = Alg_k$ is the [[category]] of $k$-algebras. \begin{defn} \label{}\hypertarget{}{} The canonical $T$-[[line object]] is the \textbf{affine line} \begin{displaymath} \mathbb{A}_k := Spec(F_T(*)) = Spec (k[t]) \,. \end{displaymath} \end{defn} Here the [[free functor|free]] $T$-algebra on a single generator $F_T(*)$ is the [[polynomial algebra]] $k[t] \in Alg_k$ on a single generator $* = t$ and $Spec k[t]$ may be regarded as the corresponding object in the [[opposite category]] $Aff_k := Alg_k^{op}$ of [[affine scheme]]s over $Spec k$. \hypertarget{MultiplicativeGroup}{}\subsubsection*{{Multiplicative group}}\label{MultiplicativeGroup} The [[multiplicative group]] object in $Ring^{op}$ corresponding to the affine line -- usually just called the \textbf{multiplicative group} -- is the [[group scheme]] denoted $\mathbb{G}_m$ \begin{itemize}% \item whose underlying affine scheme is \begin{displaymath} (\mathbb{A}^1 - \{0\}) := Spec \left(k[t,t^{-1}]\right) \,, \end{displaymath} where $k[t,t^{-1}]$ is the [[localization]] of the ring $k[t]$ at the element $t = (t-0)$. \item whose multiplication operation \begin{displaymath} \cdot \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m \end{displaymath} is the morphism in $Ring^{op}$ corresponding to the morphism in [[Ring]] \begin{displaymath} k[t_1,t_1^{-1}] \otimes_k k[t_2, t_2^{-1}] \leftarrow k[t,t^{-1}] \end{displaymath} given by $t \mapsto t_1 \cdot t_2$; \item whose unit map $Spec k \to Spec k[t,t^{-1}]$ is given by \begin{displaymath} t \mapsto 1 \end{displaymath} \item and whose inversion map $Spec k[t,t^{-1}] \to Spec[t,t^{-1}]$ is given by \begin{displaymath} t \mapsto t^{-1} \,. \end{displaymath} \end{itemize} Therefore for $R$ any [[ring]] a morphism \begin{displaymath} Spec R \longrightarrow \mathbb{G}_m \end{displaymath} is equivalently a ring homomorphism \begin{displaymath} R \leftarrow k[t,t^{-1}] \end{displaymath} which is equivalently a choice of multiplicatively invertible element in $R$. Therefore \begin{displaymath} Hom(Spec R , \mathbb{G}_m) \simeq R^\times = GL_1(R) \end{displaymath} is the [[group of units]] of $R$. \hypertarget{AdditiveGroup}{}\subsubsection*{{Additive group}}\label{AdditiveGroup} The [[additive group]] in $Ring^{op}$ corresponding to the affine line -- usually just called the \textbf{additive group} -- is the [[group scheme]] denoted $\mathbb{G}_a$ \begin{itemize}% \item whose underlying object is $\mathbb{A}^1$ itself; \item whose addition operation $\mathbb{G}_a \times \mathbb{G}_a \to \mathbb{G}_a$ is dually the ring homomorphism \begin{displaymath} k[t_1] \otimes_k k[t_2] \leftarrow k[t] \end{displaymath} given by \begin{displaymath} t \mapsto t_1 + t_2 \,; \end{displaymath} \item whose unit map is given by \begin{displaymath} t \mapsto 0 \,; \end{displaymath} \item whose inversion map is given by \begin{displaymath} t \mapsto -t \,. \end{displaymath} \end{itemize} \hypertarget{group_of_roots_of_unity}{}\subsubsection*{{Group of roots of unity}}\label{group_of_roots_of_unity} The group of $n$th [[roots of unity]] is \begin{displaymath} \mu_n = Spec(k[t](t^n -1)) \,. \end{displaymath} This sits inside the [[multiplicative group]] via the [[Kummer sequence]] \begin{displaymath} \mu_n \longrightarrow \mathbb{G}_m \stackrel{(-)^n}{\longrightarrow}\mathbb{G}_m \,. \end{displaymath} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{Grading}{}\subsubsection*{{Grading}}\label{Grading} \begin{prop} \label{}\hypertarget{}{} Let $R$ be a commutative $k$-algebra. There is a [[natural isomorphism]] between \begin{itemize}% \item $\mathbb{Z}$-[[graded algebra|gradings]] on $R$; \item $\mathbb{G}_m$-[[action]]s on $Spec R$. \end{itemize} \end{prop} \begin{proof} For the first direction, let $R$ be a $\mathbb{Z}$-[[graded algebra|graded commutative algebra]]. Then $X = Spec R$ comes with a $\mathbb{G}$-action given as follows: the action morphism \begin{displaymath} \rho : X \times \mathbb{G}_m \to X \end{displaymath} is dually the ring homomorphism \begin{displaymath} R \otimes_k \mathbb{Z}[t,t^{-1}] \leftarrow R \end{displaymath} defined on homogeneous elements $r$ of degree $n$ by \begin{displaymath} r \mapsto r \cdot t^n \,. \end{displaymath} The action property \begin{displaymath} \itexarray{ X \times \mathbb{G}_m \times \mathbb{G}_m &\stackrel{Id \times \cdot}{\to}& X \times \mathbb{G} \\ {}^{\mathllap{\rho} \times Id}\downarrow && \downarrow^{\mathrlap{\rho}} \\ X \times \mathbb{G}_m &\stackrel{\rho}{\to}& X } \end{displaymath} is equivalently the equation \begin{displaymath} r (t_1)^n \cdot (t_2)^n = r (t_1 \cdot t_2)^n \end{displaymath} for all $n \in \mathbb{Z}$. Similarly the [[unitality]] of the action is the equation \begin{displaymath} (1)^n = 1 \,. \end{displaymath} Conversely, given an action of $\mathbb{G}_m$ on $Spec R$ we have some morphism \begin{displaymath} R[t,t^{-1}] \leftarrow R \end{displaymath} that sends \begin{displaymath} r \mapsto \sum_{n \in \mathbb{Z}} r_n t^n \,. \end{displaymath} By the action property we have that \begin{displaymath} \sum_n r_n (t_1 t_2)^n = \sum_{n,k} (r_n)_k t_1^n t_2^k \,. \end{displaymath} Hence \begin{displaymath} (r_n)_k = \left\{ \itexarray{ r_n & if \; n = k \\ 0 & otherwise } \right. \end{displaymath} and so the morphism gives a decomposition of $R$ into pieces labeled by $\mathbb{Z}$. One sees that these two constructions are [[inverse]] to each other. \end{proof} \hypertarget{tale_homotopy_type}{}\subsubsection*{{\'E{}tale homotopy type}}\label{tale_homotopy_type} \begin{example} \label{}\hypertarget{}{} For $k$ a [[field]] of [[characteristic]] 0, then the affine line $\mathbb{A}^1_k$ has a [[contractible homotopy type|contractible]] [[étale homotopy type]] . This is no longer the case in [[positive number|positive]] [[characteristic]]. \end{example} (\hyperlink{HSS13}{HSS 13, section 1}) \hypertarget{InternalFormulation}{}\subsubsection*{{Internal formulation}}\label{InternalFormulation} \begin{prop} \label{}\hypertarget{}{} Let $X$ be a [[scheme]] and $Sh(Sch/X)$ the [[Zariski site|big Zariski topos]] associated to $X$. Denote by $\mathbb{A}^1$ (the [[affine line]]) the [[ring object]] $T \mapsto \Gamma(T,\mathcal{O}_T)$, i.e. the functor represented by the $X$-scheme $\mathbb{A}^1_X \coloneqq X \times Spec(\mathbb{Z}[t])$. Then: \begin{itemize}% \item $\mathbb{A}^1$ is [[internal logic|internally]] a [[local ring]]. \item $\mathbb{A}^1$ is internally a [[field]] in the sense that any nonzero element is invertible. \item Internally, any [[function]] $f : \mathbb{A}^1 \to \mathbb{A}^1$ is a [[polynomial]] function, i.e. of the form $f(x) = \sum_i a_i x^i$ for some coefficients $a_i : \mathbb{A}^1$. More precisely, \begin{displaymath} Sh(Sch/X) \models \forall f : [\mathbb{A}^1,\mathbb{A}^1]. \bigvee_{n \in \mathbb{N}} \exists a_0,\ldots,a_n : \mathbb{A}^1. \forall x : \mathbb{A}^1. f(x) = \sum_i a_i x^i. \end{displaymath} Furthermore, these coefficients are uniquely determined. \end{itemize} \end{prop} \begin{proof} Since the internal logic is local, we can assume that $X = Spec(R)$ is affine. The interpretations of the asserted statements using the [[Zariski site\#KripkeJoyal|Kripke?Joyal semantics]] are: \begin{itemize}% \item Let $S$ be an $R$-algebra and $f, g \in S$ be elements such that $f + g = 1$. Then there exists a partition $1 = \sum_i s_i \in S$ such that in the localized rings $S[s_i^{-1}]$, $f$ or $g$ is invertible. \item Let $S$ be an $R$-algebra and $f \in S$ an element. Assume that any $S$-algebra $T$ in which $f$ is zero is trivial (fulfills $1 = 0 \in T$). Then $f$ is invertible in $S$. \item Let $S$ be an $R$-algebra and $f \in [\mathbb{A}^1,\mathbb{A}^1](S) = S[T]$ be an element. Then there exists a partition $1 = \sum_i s_i \in S$ such that in the localized rings $S[s_i^{-1}]$, $f$ is a polynomial with coefficients in $S[s_i^{-1}]$. \end{itemize} For the first statement, simply choose $s_1 \coloneqq f$, $s_2 \coloneqq g$. For the second statement, consider the $S$-algebra $T \coloneqq S/(f)$. The third statement is immediate, localization is not even necessary. \end{proof} \begin{remark} \label{}\hypertarget{}{} Since the big Zariski topos is [[cocomplete category|cocomplete]] (being a [[Grothendieck topos]]), one can also get rid of the external [[disjunction]] and refer to the object $\mathbb{A}^1[X]$ of internal polynomials: The canonical ring homomorphism $\mathbb{A}^1[X] \to [\mathbb{A}^1,\mathbb{A}^1]$ (given by evaluation) is an [[isomorphism]]. \end{remark} See also at \emph{[[synthetic differential geometry applied to algebraic geometry]]}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{projective_space}{}\subsubsection*{{Projective space}}\label{projective_space} The [[diagonal]] [[action]] of the multiplicative group on the [[product]] $\mathbb{A}^n := \prod_{i = 1 \cdots n} \mathbb{A}^1$ for $n \in \mathbb{N}$ \begin{displaymath} \mathbb{A}^n \times \mathbb{G}_m \to \mathbb{A}^n \end{displaymath} is dually the morphism \begin{displaymath} k[t, t_1, \cdots, t_n] \leftarrow k[t_1, \cdots, t_n] \end{displaymath} given by \begin{displaymath} t_i \mapsto t \cdot t_i \,. \end{displaymath} This makes $k[t,\{t_i\}]$ the free [[graded algebra]] over $k$ on $n$ generators $t_i$ in degree 1. This is $\mathbb{N} \subset \mathbb{Z}$-graded. What is genuinely $\mathbb{Z}$-graded is \begin{displaymath} \mathcal{O} (\mathbb{A}^n - \{0\}) \simeq k[t_1, t_1^{-1}, \cdots, t_n, t_n^{-1}] \,. \end{displaymath} The quotient by the multiplicative group action \begin{displaymath} \mathbb{A} P^n_k := (\mathbb{A}^{n+1} - \{0\})/\mathbb{G}_m \end{displaymath} is the [[projective space]] over $k$ of [[dimension]] $n$. \hypertarget{homotopy_theory}{}\subsubsection*{{$\mathbb{A}^1$-homotopy theory}}\label{homotopy_theory} In [[A1-homotopy theory|A{\tt \symbol{94}}1 homotopy theory]] one considers the [[reflective sub-(∞,1)-category|reflective]] [[localization of an (∞,1)-category|localizatoin]] \begin{displaymath} Sh_\infty(C)_{\mathbb{A}^1} \stackrel{\leftarrow}{\hookrightarrow} Sh_\infty(C) \end{displaymath} of the [[(∞,1)-topos]] of [[(∞,1)-sheaves]] over a [[site]] $C$ such as the [[Nisnevich site]], at the morphisms of the form \begin{displaymath} p_1 : X \times \mathbb{A}^1 \to X \end{displaymath} that contract away cartesian factors of the affine line. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[analytic affine line]] \item [[spectral affine line]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of [[étale homotopy type]] is in \begin{itemize}% \item Armin Holschbach, Johannes Schmidt, Jakob Stix, \emph{\'E{}tale contractible varieties in positive characteristic} (\href{http://arxiv.org/abs/1310.2784}{arXiv:1310.2784}) \end{itemize} [[!redirects affine lines]] \end{document}