\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{affine scheme} [[!redirects affine schemes]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relative_affine_schemes}{Relative affine schemes}\dotfill \pageref*{relative_affine_schemes} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{IsbellDuality}{Isbell duality}\dotfill \pageref*{IsbellDuality} \linebreak \noindent\hyperlink{affine_serres_theorem}{Affine Serre's theorem}\dotfill \pageref*{affine_serres_theorem} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{general}{}\subsubsection*{{General}}\label{general} An \textbf{affine scheme} is a [[scheme]] that as a [[sheaf]] on the [[opposite category]] [[CRing]]${}^{op}$ of commutative [[ring]]s (or equivalently as a sheaf on the subcategory of finitely presented rings) is [[representable functor|representable]]. In a [[ringed space]] picture an affine scheme is a [[locally ringed space]] which is locally isomorphic to the [[prime spectrum]] of a commutative ring. Affine schemes form a [[full subcategory]] $Aff\hookrightarrow Scheme$ of the category of schemes. The correspondence $Y\mapsto Spec(\Gamma_Y \mathcal{O}_Y)$ extends to a [[functor]] $Scheme\to Aff$. The \textbf{fundamental theorem on morphisms of schemes} (see \hyperlink{IsbellDuality}{below}) says that there is a bijection \begin{displaymath} CRing(R, \Gamma_Y\mathcal{O}_Y) \cong Scheme(Y, Spec R). \end{displaymath} In other words, for fixed $Y$, and for varying $R$ there is a restricted functor \begin{displaymath} Scheme(-,Y)|_{Aff^{op}} = h_Y|_{Aff^{op}} = h_Y|_{CRing} : CRing\to Set, \end{displaymath} and the functor $Y\mapsto h_Y|_{CRing}$ from schemes to presheaves on $Aff$ is [[fully faithful functor|fully faithful]]. Thus the general schemes if defined as ringed spaces, indeed form a full subcategory of the category of presheaves on $Aff$. See at \emph{[[functorial geometry]]}. There is an analogue of this theorem for relative [[noncommutative scheme]]s in the sense of Rosenberg. \begin{remark} \label{}\hypertarget{}{} There is no similar equation the other way round, that is ``$Ring(\Gamma_Y\mathcal{O}_Y, R) \cong Scheme(Spec R, Y)$''. As a mnemonic, note that with ordinary Galois connections between power sets, one is always [[Galois connection\#properties|homming into (not out of)]] the functorial construction. More geometrically, consider the example $Y = \mathbb{P}^n$ and $R = \mathbb{Z}$. Then the left hand side consists of all the $\mathbb{Z}$-valued points of $\mathbb{P}^n$ (of which there are many). On the other hand, the right hand side only contains the unique ring homomorphism $\mathbb{Z} \to \mathbb{Z}$, since $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n) \cong \mathbb{Z}$. \end{remark} \hypertarget{relative_affine_schemes}{}\subsubsection*{{Relative affine schemes}}\label{relative_affine_schemes} A \textbf{relative affine scheme} over a scheme $Y$ is a [[relative scheme]] $f:X\to Y$ isomorphic to the spectrum of a (commutative unital) algebra $A$ in the category of quasicoherent $\mathcal{O}_Y$-modules; such a ``relative'' spectrum has been introduced by Grothendieck. It is characterized by the property that for every open $V\subset Y$ the inverse image $f^{-1}V\subset X$ is an open affine subscheme of $X$ isomorphic to $Spec(A(V))$ and such open affines glue in such a way that $f^{-1}V\hookrightarrow f^{-1}W$ corresponds to the restriction morphism $A(W)\to A(V)$ of algebras. Relative affine scheme is a concrete way to represent an [[affine morphism]] of schemes. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{IsbellDuality}{}\subsubsection*{{Isbell duality}}\label{IsbellDuality} \begin{prop} \label{AffineSchemesFullSubcategoryOfOppositeOfRings}\hypertarget{AffineSchemesFullSubcategoryOfOppositeOfRings}{} \textbf{([[affine schemes]] form [[full subcategory]] of [[opposite category|opposite]] of [[rings]])} The [[functor]] \begin{displaymath} \mathcal{O} \;\colon\; Schemes_{Aff} \longrightarrow Ring^{op} \end{displaymath} from affine schemes to their global [[rings of functions]] is a [[fully faithful functor]]. \end{prop} (e.g. \hyperlink{Hartschorne77}{Hartschorne 77, chapter II, prop. 2.3}) \begin{remark} \label{}\hypertarget{}{} \textbf{([[Isbell duality]] between [[geometry]] and [[algebra]])} Prop. \ref{AffineSchemesFullSubcategoryOfOppositeOfRings} is the analog in [[algebraic geometry]] of similar statements of [[Isbell duality]] between [[geometry]] and [[algebra]], such as [[Gelfand duality]] or [[Milnor's exercise]]. \end{remark} [[!include Isbell duality - table]] \hypertarget{affine_serres_theorem}{}\subsubsection*{{Affine Serre's theorem}}\label{affine_serres_theorem} [[affine Serre's theorem|Affine Serre's theorem]] Given a commutative unital ring $R$ there is an equivalence of categories ${}_R Mod\to Qcoh(Spec R)$ between the category of $R$-modules and the category of quasicoherent sheaves of $\mathcal{O}_{Spec R}$-modules given on objects by $M\mapsto \tilde{M}$ where $\tilde{M}$ is the unique sheaf such that the restriction on the principal Zariski open subsets is given by the localization $\tilde{M}(D_f) = R[f^{-1}]\otimes_R M$ where $D_f$ is the principal Zariski open set underlying $Spec R[f^{-1}]\subset Spec R$, and the restrictions are given by the canonical maps among the localizations. The action of $\mathcal{O}_{Spec R}$ is defined using a similar description of $\mathcal{O}_{Spec R} = \tilde{R}$. Its right adjoint (quasi)inverse functor is given by the global sections functor $\mathcal{F}\mapsto\mathcal{F}(Spec R)$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[spectral topological space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Robin Hartshorne, \emph{Algebraic geometry}, Springer 1977 \item Demazure, Gabriel, \emph{Algebraic groups} \end{itemize} category: algebraic geometry \end{document}