\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{algebraic K-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{symmetric_monoidal_ktheory}{Symmetric monoidal K-theory}\dotfill \pageref*{symmetric_monoidal_ktheory} \linebreak \noindent\hyperlink{quillen_qconstruction_for_exact_categories}{Quillen Q-construction (for exact categories)}\dotfill \pageref*{quillen_qconstruction_for_exact_categories} \linebreak \noindent\hyperlink{waldhausen_construction_for_waldhausen_categories}{Waldhausen $S_\bullet$-construction (for Waldhausen categories)}\dotfill \pageref*{waldhausen_construction_for_waldhausen_categories} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_rings}{For rings}\dotfill \pageref*{for_rings} \linebreak \noindent\hyperlink{plus_construction}{Plus construction}\dotfill \pageref*{plus_construction} \linebreak \noindent\hyperlink{direct_sum_ktheory}{Direct sum K-theory}\dotfill \pageref*{direct_sum_ktheory} \linebreak \noindent\hyperlink{exact_ktheory}{Exact K-theory}\dotfill \pageref*{exact_ktheory} \linebreak \noindent\hyperlink{for_schemes}{For schemes}\dotfill \pageref*{for_schemes} \linebreak \noindent\hyperlink{quillen_ktheory}{Quillen K-theory}\dotfill \pageref*{quillen_ktheory} \linebreak \noindent\hyperlink{thomasontrobaugh_ktheory}{Thomason-Trobaugh K-theory}\dotfill \pageref*{thomasontrobaugh_ktheory} \linebreak \noindent\hyperlink{for_smooth_manifolds}{For smooth manifolds}\dotfill \pageref*{for_smooth_manifolds} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{chern_characters}{Chern characters}\dotfill \pageref*{chern_characters} \linebreak \noindent\hyperlink{regulators_and_relation_to_ordinary_cohomology}{Regulators and relation to ordinary cohomology}\dotfill \pageref*{regulators_and_relation_to_ordinary_cohomology} \linebreak \noindent\hyperlink{cyclotomic_trace_and_relation_to_topological_hochschild_homology}{Cyclotomic trace and relation to topological Hochschild homology}\dotfill \pageref*{cyclotomic_trace_and_relation_to_topological_hochschild_homology} \linebreak \noindent\hyperlink{comparison_map_and_relation_to_topological_ktheory}{Comparison map and Relation to topological K-theory}\dotfill \pageref*{comparison_map_and_relation_to_topological_ktheory} \linebreak \noindent\hyperlink{Descent}{Descent}\dotfill \pageref*{Descent} \linebreak \noindent\hyperlink{zariski_and_nisnevich_descent}{Zariski and Nisnevich descent}\dotfill \pageref*{zariski_and_nisnevich_descent} \linebreak \noindent\hyperlink{etale_descent}{Etale descent}\dotfill \pageref*{etale_descent} \linebreak \noindent\hyperlink{AsTheKTheoryOfAlgebraicVectorBundles}{Description of the K-theory sheaf via algebraic vector bundles}\dotfill \pageref*{AsTheKTheoryOfAlgebraicVectorBundles} \linebreak \noindent\hyperlink{RelationToKKAndMotives}{Relation to non-commutative topology and non-commutative motives}\dotfill \pageref*{RelationToKKAndMotives} \linebreak \noindent\hyperlink{redshift_conjecture}{Red-shift conjecture}\dotfill \pageref*{redshift_conjecture} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{OnMonoidalStacks}{On monoidal stacks}\dotfill \pageref*{OnMonoidalStacks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{introductions}{Introductions}\dotfill \pageref*{introductions} \linebreak \noindent\hyperlink{classical}{Classical}\dotfill \pageref*{classical} \linebreak \noindent\hyperlink{ReferencesAlgebraicKTheoryForQuotientStacks}{Algebraic K-theory of quotient stacks}\dotfill \pageref*{ReferencesAlgebraicKTheoryForQuotientStacks} \linebreak \noindent\hyperlink{algebraic_ktheory_of_ring_spectra}{Algebraic K-theory of ring spectra}\dotfill \pageref*{algebraic_ktheory_of_ring_spectra} \linebreak \noindent\hyperlink{via_stable_categories}{Via stable $(\infty,1)$-categories}\dotfill \pageref*{via_stable_categories} \linebreak \noindent\hyperlink{via_symmetric_monoidal_categories}{Via symmetric monoidal $(\infty,1)$-categories}\dotfill \pageref*{via_symmetric_monoidal_categories} \linebreak \noindent\hyperlink{ktheory_stacks}{K-theory stacks}\dotfill \pageref*{ktheory_stacks} \linebreak \noindent\hyperlink{examples_3}{Examples}\dotfill \pageref*{examples_3} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Algebraic K-theory is about natural constructions of [[cohomology theories]]/[[spectra]] from [[algebra|algebraic]] data such as [[commutative rings]], [[symmetric monoidal categories]] and various [[homotopy theory|homotopy theoretic]] refinements of these. From a modern perspective, the algebraic K-theory [[spectrum]] $\mathbf{K}(R)$ of a [[commutative ring]] is simply the [[K-theory of a symmetric monoidal category|∞-group completion]] of [[algebraic vector bundles]] on $Spec(R)$; this will be discussed in more detail \hyperlink{AsTheKTheoryOfAlgebraicVectorBundles}{below}. In particular there is a natural concept of algebraic K-theory of ``[[brave new rings]]'', i.e. of [[ring spectra]]/[[E-∞ rings]]. Historically, the \emph{algebraic K-theory} of a [[commutative ring]] $R$ (what today is the ``0th'' algebraic K-theory group) was originally defined to be the [[Grothendieck group]] of its [[symmetric monoidal category]] of [[projective modules]] (under [[tensor product]] of modules). Under the \href{module#RelationToVectorBundlesInIntroduction}{relation between modules and vector bundles}, this is directly analogous to the basic definition of [[topological K-theory]], whence the common term. (In fact when applied to the \emph{[[stack]]} of [[vector bundles]] then algebraic K-theory subsumes [[topological K-theory]] and also [[differential K-theory]], see \hyperlink{OnMonoidalStacks}{below}). There are canonical maps $K_0(R)\to Pic(R)$ from the 0th algebraic K-theory of a ring to its [[Picard group]] and $K_1(R)\to GL_1(R)$ from the first algebraic K-theory group of $R$ to its [[group of units]] which are given in components by the [[determinant]] functor. This fact is sometimes used to motivate algebraic K-theory as a ``generalization of [[linear algebra]]'' (see e.g. \href{http://mathoverflow.net/a/171369/381}{this MO discussion}). This is also how the traditional [[regulator of a number field]] relates to [[Beilinson regulators]] of algebraic K-theory. More generally, following the axiomatics of \emph{[[generalized (Eilenberg-Steenrod) cohomology]]} any \emph{algebraic K-theory} should be given by a sequence of [[functors]] $K_i$ from some suitable class of [[categories]] of ``algebraic nature'' to [[abelian groups]], satisfying some natural conditions. Moreover, following the [[Brown representability theorem]] these groups should arise as the [[homotopy groups]] of a [[spectrum]], the algebraic \emph{[[K-theory spectrum]]}. Classical constructions producing this by combinatorial means are known as the \emph{[[Quillen Q-construction]]} defined on \emph{[[Quillen exact categories]]} and more generally the \emph{[[Waldhausen S-construction]]} defined on \emph{[[Waldhausen categories]]}. For more on the history of the subject see (\hyperlink{Arlettaz04}{Arlettaz 04}, \hyperlink{Grayson13}{Grayson 13}) and see at at \emph{[[Algebraic K-theory, a historical perspective]]}. There are two ways to think of the traditional algebraic K-theory of a commutative ring more conceptually: on the one hand this construction is the [[group completion]] of the [[direct sum]] [[symmetric monoidal category|symmetric monoidal]]-structure on the [[category of modules]], on the other hand it is the group completion of the addition operation expressed by [[short exact sequences]] in that category. This leads to the two modern ways of expressing and viewing algebraic K-theory: \begin{enumerate}% \item \textbf{monoidal.} The [[core]] of a [[symmetric monoidal category]] or more generally of a [[symmetric monoidal (∞,1)-category]] has a [[universal construction|universal]] completion to an [[abelian ∞-group]]/[[connective spectrum]] optained by universally adjoining [[inverses]] to the symmetric monoidal operation -- the [[∞-group completion]]. This yields the concept of [[K-theory of a permutative category|algebraic K-theory of a symmetric monoidal category]] and more generally that of [[algebraic K-theory of a symmetric monoidal (∞,1)-category]]; \item \textbf{exact/stable.} Analogously, inverting the addition operation expressed by the [[exact sequences]] in an [[abelian category]] or more generally in a [[stable (∞,1)-category]] yields the [[algebraic K-theory of a stable (∞,1)-category]]. Explicit ways to express this are known as the \emph{[[Quillen Q-construction]]} and the \emph{[[Waldhausen S-construction]]}. This turns out to be a universal construction in the context of [[non-commutative motives]]. \end{enumerate} Here the second construction may be understood as first [[split exact sequence|splitting]] the [[exact sequences]] and then applying the first construction to the resulting [[direct sum]] monoidal structure. Typically the first construction here contains more information but is harder to compute, and vice versa (see also MO-discussion \href{http://mathoverflow.net/a/98602/381}{here} and \href{http://mathoverflow.net/a/102583/381}{here}). Both of these constructions produce a [[spectrum]] (hence [[Brown representability theorem|representing]] a [[generalized (Eilenberg-Steenrod) cohomology theory]]) -- called the \emph{[[K-theory spectrum]]} -- and the algebraic K-theory groups are the [[homotopy groups]] of that spectrum. The classical case of the algebraic K-theory of a commutative ring $R$ is a special case of this general concept of algebraic K-theory by either forming the [[symmetric monoidal category]] $(Mod(R), \oplus)$ and applying the [[abelian ∞-group]]-completion to that, or else forming the [[stable (∞,1)-category of chain complexes]] of $R$-modules and applyong the [[Waldhausen S-construction]] to that. In both cases the result is a [[spectrum]] whose degree-0 [[homotopy group]] is the ordinary algebraic K-theory of $R$ as given by the [[Grothendieck group]] and whose higher homotopy groups are its \emph{higher algebraic K-theory} groups. \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} \hypertarget{symmetric_monoidal_ktheory}{}\subsubsection*{{Symmetric monoidal K-theory}}\label{symmetric_monoidal_ktheory} For a [[symmetric monoidal category]] $C$, K-theory may be defined by taking \begin{itemize}% \item the [[maximal subgroupoid]] $i C \subset C$, \item the [[classifying space]] $B(i C)$ (a [[topological monoid]]), \item the [[group completion]] $\Omega B B (i C)$. \end{itemize} See at \begin{itemize}% \item [[K-theory of a symmetric monoidal (∞,1)-category]] \item [[K-theory of a permutative category]] \item [[K-theory of a bipermutative category]] \end{itemize} \hypertarget{quillen_qconstruction_for_exact_categories}{}\subsubsection*{{Quillen Q-construction (for exact categories)}}\label{quillen_qconstruction_for_exact_categories} Given an [[Quillen exact category]] $E$, one defines $K(E)$ by applying \begin{itemize}% \item the [[Quillen Q-construction]] $Q(E)$, \item the [[group completion]] $\Omega B Q(E)$. \end{itemize} See at \begin{itemize}% \item [[Quillen Q-construction]] \end{itemize} \hypertarget{waldhausen_construction_for_waldhausen_categories}{}\subsubsection*{{Waldhausen $S_\bullet$-construction (for Waldhausen categories)}}\label{waldhausen_construction_for_waldhausen_categories} Given a [[Waldhausen category]] $(C, w C)$, one defines its $K$-theory by applying \begin{itemize}% \item the [[Waldhausen S-construction]] $w S_\bullet C$ (a [[simplicial category]]), \item the [[nerve]] (a [[bisimplicial set]]), \item the [[colimit]] (a [[simplicial set]]), \item the [[geometric realization]] (a [[space]]). \end{itemize} There is also a [[Waldhausen S-construction]] for [[stable (infinity,1)-categories]] and, most generally, for [[Waldhausen (infinity,1)-categories]]. See at \begin{itemize}% \item [[Waldhausen S-construction]] \item [[K-theory of a stable (infinity,1)-category]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{for_rings}{}\subsubsection*{{For rings}}\label{for_rings} We recall several constructions of the [[algebraic K-theory]] of a [[ring]]. See (\hyperlink{Weibel}{Weibel, IV.4.8, IV.4.11.1}) for details. \hypertarget{plus_construction}{}\paragraph*{{Plus construction}}\label{plus_construction} Given an associative unital [[ring]] $R$, one may define the algebraic K-theory [[space]] $K(R) = BGL(R)^+$ by taking \begin{itemize}% \item the [[general linear groups]] $GL_n(R)$ for $n \ge 0$, \item their [[classifying spaces]], \item the [[colimit]] $BGL(R) = colim_n BGL_n(R)$, \item the [[Quillen plus construction]]. \end{itemize} \hypertarget{direct_sum_ktheory}{}\paragraph*{{Direct sum K-theory}}\label{direct_sum_ktheory} Consider the category $P(X)$ of [[finitely generated]] [[projective]] (right) $R$-modules. It has a [[symmetric monoidal structure]] given by [[direct sum]]. The algebraic K-theory $K(R)$ may be described as the [[K-theory of a symmetric monoidal (infinity,1)-category]] of $P(R)$. That is, it is the [[group completion]] $K(R) = \Omega B B (i P(X))$ where $i P(X)$ denotes the [[maximal subgroupoid]]. See (\hyperlink{Weibel}{Weibel, IV.4.8, IV.4.11.1}). \hypertarget{exact_ktheory}{}\paragraph*{{Exact K-theory}}\label{exact_ktheory} Consider the category $P(X)$ of [[finitely generated]] [[projective module|projective]] (right) $R$-modules. This is an [[exact category]] and the K-theory $K(R)$ may be described via the [[Quillen Q-construction]]: \begin{displaymath} K(R) = \Omega B (Q(P(R)). \end{displaymath} \hypertarget{for_schemes}{}\subsubsection*{{For schemes}}\label{for_schemes} For [[schemes]], there are two constructions which do not agree in full generality. See \hyperlink{ThomasonTrobaugh90}{Thomason-Trobaugh 90}. \hypertarget{quillen_ktheory}{}\paragraph*{{Quillen K-theory}}\label{quillen_ktheory} The Quillen K-theory of a [[scheme]] $X$ is defined as the algebraic K-theory of the [[exact category]] $Vect(X)$ of [[vector bundles]] on $X$ (using the [[Quillen Q-construction]]). \hypertarget{thomasontrobaugh_ktheory}{}\paragraph*{{Thomason-Trobaugh K-theory}}\label{thomasontrobaugh_ktheory} Let $Perf(X)$ be the category of [[perfect complexes]] on $X$. This admits the structure of a [[Waldhausen category]], and the Thomason-Trobaugh K-theory of $X$ is defined via the [[Waldhausen S-construction]]. It may also be defined as the [[K-theory of a stable (infinity,1)-category]] of $Perf(X)$ viewed as a [[stable (infinity,1)-category]]. Thomason-Trobaugh K-theory coincides with Quillen K-theory for schemes that admit an ample family of [[line bundles]], but has the advantage of better global descent properties. \hypertarget{for_smooth_manifolds}{}\subsubsection*{{For smooth manifolds}}\label{for_smooth_manifolds} Discussion of algebraic K-theory as a [[smooth spectrum]] $SmoothMfd^{op} \longrightarrow Spectra$ via $X \mapsto K(C^\infty(X))$ is in (\hyperlink{BunkeNikolausVoelkl13}{Bunke-Nikolaus-Voelkl 13}, \hyperlink{Bunke14}{Bunke 14}). For more on this see at \begin{itemize}% \item [[algebraic K-theory of smooth manifolds]] \item [[differential cohomology hexagon]], section \emph{\href{differential+cohomology+diagram#SoothVectorBundlesWithConnectionAndEInvariant}{Algebraic K-theory of smooth manifolds and the e-invariant}} \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{chern_characters}{}\subsubsection*{{Chern characters}}\label{chern_characters} \hypertarget{regulators_and_relation_to_ordinary_cohomology}{}\paragraph*{{Regulators and relation to ordinary cohomology}}\label{regulators_and_relation_to_ordinary_cohomology} See at \emph{[[Beilinson regulator]]}. \hypertarget{cyclotomic_trace_and_relation_to_topological_hochschild_homology}{}\paragraph*{{Cyclotomic trace and relation to topological Hochschild homology}}\label{cyclotomic_trace_and_relation_to_topological_hochschild_homology} Given a ring $R$, then there is a natural morphism of [[spectra]] $\backslash$begin\{tikzcd\} \& TC(R) $\backslash$arrowd$\backslash$ K(R) $\backslash$arrowru $\backslash$arrowr \& THH(R)$\backslash$ $\backslash$end\{tikzcd\} from the algebraic K-theory spectrum to the [[topological Hochschild homology]] spectrum and factoring through the [[topological cyclic homology]] spectrum called the \emph{[[cyclotomic trace]]} which much like a [[Chern character]] map for algebraic K-theory. \hypertarget{comparison_map_and_relation_to_topological_ktheory}{}\subsubsection*{{Comparison map and Relation to topological K-theory}}\label{comparison_map_and_relation_to_topological_ktheory} \begin{itemize}% \item [[comparison map between algebraic and topological K-theory]] \end{itemize} \hypertarget{Descent}{}\subsubsection*{{Descent}}\label{Descent} See also \begin{itemize}% \item Moritz Kerz, Florian Strunk, [[Georg Tamme]], \emph{Algebraic K-theory and descent for blow-ups} (\href{https://arxiv.org/abs/1611.08466}{arXiv:1611.08466}) \end{itemize} \hypertarget{zariski_and_nisnevich_descent}{}\paragraph*{{Zariski and Nisnevich descent}}\label{zariski_and_nisnevich_descent} The algebraic K-theory spectrum $\mathbf{K}$ satisfies [[descent]] to give a [[sheaf]] of [[connective spectra]] on the [[Zariski site]]. For regular noetherian schemes this statement is due to (\hyperlink{BrownGersten73}{Brown Gersten 73}). The generalization to finite dimensional noetherian schemes is due to (\hyperlink{ThomasonTrobaugh90}{Thomason-Trobaugh 90}). Moreover, $\mathbf{K}$ satisfies descent with respect to the [[Nisnevich site|Nisnevich topology]] (which lies between Zariski and \'e{}tale). This is due to (\hyperlink{Nisnevich89}{Nisnevich 89}) and was generalized in turn to finite dimensional noetherian schemes in the same paper of Thomason. Further generalization of the descent result to finite dimensional quasi-compact quasi-separated schemes is due to (\hyperlink{Rosenschon06}{Rosenschon 06}). \hypertarget{etale_descent}{}\paragraph*{{Etale descent}}\label{etale_descent} The question of descent of $\mathbf{K}$ over the [[étale site]] is closely related to the [[Lichtenbaum-Quillen conjecture]], see also (\hyperlink{Thomason85}{Thomason 85}). This is now a theorem of Rost and Voevodsky and it implies that K-theory does satisfy etale descent in sufficient large degrees. \begin{quote}% \href{http://mathoverflow.net/a/180265/381}{MO comment} \end{quote} \hypertarget{AsTheKTheoryOfAlgebraicVectorBundles}{}\paragraph*{{Description of the K-theory sheaf via algebraic vector bundles}}\label{AsTheKTheoryOfAlgebraicVectorBundles} Let $Sch$ denote the gros [[Zariski site]] of regular, separated, noetherian schemes. It is explained in (\hyperlink{BunkeTamme12}{Bunke-Tamme 12, section 3.3} that the presheaf of [[spectra]] on $Sch$ defined by algebraic K-theory admits the following description. Regard the [[stack]] $\mathbf{Vect}^\oplus$ of [[algebraic vector bundles]] on $Sch$ as taking values in [[symmetric monoidal (∞,1)-categories]], via the [[direct sum]] of vector bundles. Then apply the [[K-theory of a symmetric monoidal (∞,1)-category]]-construction $\mathcal{K}$ to this, yielding a [[sheaf of spectra]]. This identifies with the usual Thomason-Trobaugh K-theory sheaf,a fact that follows from \begin{enumerate}% \item Zariski descent for Thomason-Trobaugh K-theory, \item the Zariski-local equivalence between Thomason-Trobaugh K-theory, Quillen K-theory, and direct sum K-theory. \end{enumerate} \hypertarget{RelationToKKAndMotives}{}\subsubsection*{{Relation to non-commutative topology and non-commutative motives}}\label{RelationToKKAndMotives} [[!include noncommutative motives - table]] \hypertarget{redshift_conjecture}{}\subsubsection*{{Red-shift conjecture}}\label{redshift_conjecture} \begin{itemize}% \item [[red-shift conjecture]] \end{itemize} [[!include chromatic tower examples - table]] \hypertarget{examples_2}{}\subsection*{{Examples}}\label{examples_2} \hypertarget{OnMonoidalStacks}{}\subsubsection*{{On monoidal stacks}}\label{OnMonoidalStacks} Algebraic K-theory is traditionally applied to single [[symmetric monoidal (∞,1)-categories|symmetric monoidal]]/[[stable (∞,1)-category|stable]] [[(∞,1)-categories]], but to the extent that it is [[(∞,1)-functor|functorial]] it may just as well be applied to [[(∞,1)-sheaves]] with values in these. Notably, applied to the monoidal [[stack]] of [[vector bundles]] (with [[connection on a bundle|connection]]) on the [[site]] of [[smooth manifolds]], the [[K-theory of a symmetric monoidal (∞,1)-category|K-theory of a monoidal category]]-functor produces a [[sheaf of spectra]] which is a form of [[differential K-theory]] and whose [[geometric realization]] is the [[topological K-theory]] spectrum. For more on this see at \emph{\href{differential%20cohomology%20diagram#DifferentialKTheory}{differential cohomology hexagon -- Differential K-theory}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[equivariant algebraic K-theory]] \end{itemize} Types of categories for which a theory of algebraic K-theory exist include notably the notions \begin{itemize}% \item [[Quillen exact category]], \item [[abelian category]], \item [[Waldhausen category]], \item [[triangulated category]]. \end{itemize} Concrete examples of interest include for instance \begin{itemize}% \item the category of finitely generated [[projective object]]s over a unital $k$-[[associative unital algebra|algebra]], \item the category of [[coherent sheaf|coherent sheaves]] over a [[noetherian ring|noetherian]] [[scheme]], \item the category of locally free sheaves over a scheme, \item [[Gersten resolution]] \item [[Milnor's K2]] ([[Steinberg group]], [[universal central extension]]) \item [[higher algebraic K-theory]] [[Quillen exact category]], [[Quillen's Q-construction]], [[Waldhausen S-construction]], [[Volodin spaces]]; \item [[topological cyclic homology]], [[algebraic K-theory of operator algebras]] \item [[Beilinson regulator]] \item [[differential algebraic K-theory]] \item [[non-connective algebraic K-theory]] \item [[real algebraic K-theory]] \item [[bivariant algebraic K-theory]] \item [[K-motive]] \item [[red-shift conjecture]] \item [[filtrations on algebraic K-theory]] \end{itemize} [[!include noncommutative motives - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{introductions}{}\subsubsection*{{Introductions}}\label{introductions} Surveys with accounts of the historical development include \begin{itemize}% \item [[Dominique Arlettaz]], \emph{Algebraic K-theory of rings from a topological viewpoint} (\href{http://www.math.uiuc.edu/K-theory/0420/Arlettaz-survey.pdf}{pdf}) \item [[Daniel Grayson]], \emph{Quillen's work in algebraic K-theory}, J. K-Theory 11 (2013), 527--547 \href{http://www.math.uiuc.edu/~dan/Papers/qs-published-final.pdf}{pdf} \end{itemize} An introductory textbook account is in \begin{itemize}% \item [[Charles Weibel]], \emph{The K-Book: An introduction to algebraic K-theory} (\href{http://www.math.rutgers.edu/~weibel/Kbook.html}{web}) \end{itemize} Further review includes \begin{itemize}% \item Olivier Isely, \emph{Algebraic $K$-theory}, 2005-06 ([[IselyKTheory.pdf:file]]) \item [[Teena Gerhardt]], \emph{Computations in algebraic K-theory}, talk at \href{http://qcpages.qc.cuny.edu/~swilson/cunyworkshop14.html}{CUNY Workshop on differential cohomologies 2014} (\href{http://videostreaming.gc.cuny.edu/videos/video/1800/in/channel/55/}{video recording}) \end{itemize} Review of the relation to [[Dennis trace]], [[topological cyclic homology]] and [[topological Hochschild homology]] is in \begin{itemize}% \item [[Bjørn Dundas]], [[Thomas Goodwillie]], [[Randy McCarthy]], \emph{The local structure of algebraic K-theory}, Springer 2013 (\href{http://math.mit.edu/~nrozen/juvitop/dundas.pdf}{pdf}) \end{itemize} \hypertarget{classical}{}\subsubsection*{{Classical}}\label{classical} Original articles include \begin{itemize}% \item [[Daniel Quillen]], \emph{Higher algebraic K-theory}, in Higher K-theories, pp. 85--147, Proc. Seattle 1972, Lec. Notes Math. 341, Springer 1973. (\href{http://math.mit.edu/~hrm/kansem/quillen-higher-algebraic-k-theory.pdf}{pdf}) also: [[Daniel Grayson]], \emph{Higher algebraic K-theory II, after Daniel Quillen} (\href{http://www.math.illinois.edu/~dan/Papers/HigherAlgKThyII.pdf}{pdf}) \item [[Kenneth Brown]], Stephen M. Gersten, \emph{Algebraic K-theory as generalized sheaf cohomology}, Higher K-Theories, Lecture Notes in Mathematics Volume 341, 1973, pp 266-292. \item [[F. Waldhausen]], \emph{Algebraic K-theory of spaces}, Alg. and Geo. Top., Springer Lect. Notes Math. 1126 (1985), 318-419, \href{http://www.maths.ed.ac.uk/~aar/surgery/rutgers/wald.pdf}{pdf}. \item [[R. W. Thomason]], \emph{Algebraic K-theory and \'e{}tale cohomology}, Ann. Sci. Ecole Norm. Sup. 18 (4), 1985, pp. 437--552. \item [[Yevsey Nisnevich]], \emph{The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory}, Algebraic K-theory: connections with geometry and topology, 1989, pp 241-341. \item [[R. W. Thomason]], Thomas Trobaugh, \emph{Higher algebraic K-theory of schemes and of derived categories}, \emph{The Grothendieck Festschrift}, 1990, 247-435. \item Andreas Rosenschon, P.A. Ostv\ae{}r, \emph{Descent for K-theories}, Journal of Pure and Applied Algebra 206, 2006, pp 141--152. \end{itemize} For [[complex varieties]]: \begin{itemize}% \item Claudio Pedrini, [[Charles Weibel]], \emph{The higher K-theory of complex varieties}, K-theory 21 (2001), 367-385 (\href{http://www.math.uiuc.edu/K-theory/0403/}{web}) \item Michael Paluch, \emph{Algebraic K-theory and topological spaces} (\href{http://www.math.uiuc.edu/K-theory/0471/alg-top.pdf}{pdf}) \end{itemize} For [[ring spectra]] \begin{itemize}% \item [[Anthony Elmendorf]], [[Igor Kriz]], [[Michael Mandell]], [[Peter May]], chapter VI of \emph{[[Rings, modules and algebras in stable homotopy theory]]}, AMS Mathematical Surveys and Monographs Volume 47 (1997) (\href{http://www.math.uchicago.edu/~may/BOOKS/EKMM.pdf}{pdf}) \end{itemize} For discussion of stable phenomena in algebraic K-theory, see section 4 of \begin{itemize}% \item [[Ralph Cohen]], \emph{Stability phenomena in the topology of moduli spaces} (\href{http://arxiv.org/PS_cache/arxiv/pdf/0908/0908.1938v2.pdf}{pdf}) \end{itemize} Discussion of the [[comparison map between algebraic and topological K-theory]] includes \begin{itemize}% \item [[Jonathan Rosenberg]], \emph{Comparison between algebraic and topological K-theory for Banach algebras and $C^\ast$-algebras} (\href{http://www2.math.umd.edu/~jmr/algtopK.pdf}{pdf}) \end{itemize} For [[smooth manifolds]]: \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], \emph{Differential cohomology theories as sheaves of spectra}, Journal of Homotopy and Related Structures October 2014 (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \item [[Ulrich Bunke]], \emph{A regulator for smooth manifolds and an index theorem} (\href{http://arxiv.org/abs/1407.1379}{arXiv:1407.1379}) \end{itemize} \hypertarget{ReferencesAlgebraicKTheoryForQuotientStacks}{}\subsubsection*{{Algebraic K-theory of quotient stacks}}\label{ReferencesAlgebraicKTheoryForQuotientStacks} Discussion of algebraic K-theory for [[algebraic stacks]] (generalizing algebraic [[equivariant K-theory]]) is in \begin{itemize}% \item [[Robert Thomason]], \emph{Algebraic K-theory of group scheme actions}, Algebraic Topology and Algebraic K-theory, Ann. Math. Stud., Princeton, 113, (1987), 539-563. \item [[Amalendu Krishna]], Charanya Ravi, \emph{On the K-theory of schemes with group scheme actions} (\href{http://arxiv.org/abs/1509.05147}{arXiv:1509.05147}) \end{itemize} See also at \emph{\href{universal+Chern-Simons+line+3-bundle#ForReductiveAlgebraicGroups}{universal Chern-Simons 3-bundle -- For reductive groups}}. \hypertarget{algebraic_ktheory_of_ring_spectra}{}\subsubsection*{{Algebraic K-theory of ring spectra}}\label{algebraic_ktheory_of_ring_spectra} (\hyperlink{ThomasonTrobaugh90}{Thomason-Trobaugh 90}) \hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10} Waldhausen's \emph{[[A-theory]]} is the algebraic K-theory of [[suspension spectra]] of [[loop spaces]]. \hypertarget{via_stable_categories}{}\subsubsection*{{Via stable $(\infty,1)$-categories}}\label{via_stable_categories} The [[stable (∞,1)-category]] theory picture is discussed in \begin{itemize}% \item [[Andrew Blumberg]], [[David Gepner]], [[Gonçalo Tabuada]], \emph{A universal characterization of higher algebraic K-theory} (\href{http://arxiv.org/abs/1001.2282}{arXiv:1001.2282}). \end{itemize} (in terms of [[noncommutative motives]]) and in \begin{itemize}% \item [[Clark Barwick]], \emph{On the algebraic K-theory of higher categories, I. The universal property of Waldhausen K-theory} (\href{http://de.arxiv.org/abs/1204.3607}{arXiv:1204.3607}) \end{itemize} \hypertarget{via_symmetric_monoidal_categories}{}\subsubsection*{{Via symmetric monoidal $(\infty,1)$-categories}}\label{via_symmetric_monoidal_categories} The perspective of [[algebraic K-theory of a symmetric monoidal (∞,1)-category]] is developed in \begin{itemize}% \item [[Ulrich Bunke]], [[Georg Tamme]], section 2.1 of \emph{Regulators and cycle maps in higher-dimensional differential algebraic K-theory} (\href{http://arxiv.org/abs/1209.6451}{arXiv:1209.6451}) \item [[Thomas Nikolaus]] \emph{Algebraic K-Theory of $\infty$-Operads} (\href{http://arxiv.org/abs/1303.2198}{arXiv:1303.2198}) \item [[Ulrich Bunke]], [[Georg Tamme]], \emph{Multiplicative differential algebraic K-theory and applications} (\href{http://arxiv.org/abs/1311.1421}{arXiv:1311.1421}) \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], def. 6.1 in \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \item [[David Gepner]], [[Moritz Groth]], [[Thomas Nikolaus]], \emph{Universality of multiplicative infinite loop space machines}, \href{http://arxiv.org/abs/1305.4550}{arXiv:1305.4550}. \end{itemize} \hypertarget{ktheory_stacks}{}\subsubsection*{{K-theory stacks}}\label{ktheory_stacks} The system of [[infinite loop spaces]] of the algebraic K-theory spectrum regarded as an [[∞-stack]] on the [[Nisnevich site]] and the [[principal ∞-bundles]] over it is considered in \begin{itemize}% \item [[Sho Saito]], \emph{Higher Tate central extensions via K-theory and infinity-topos theory} (\href{http://arxiv.org/abs/1405.0923}{arXiv:1405.0923}) \end{itemize} implementing a suggestion stated in \begin{itemize}% \item [[Vladimir Drinfeld]], \emph{Infinite-dimensional vector bundles in algebraic geometry (an introduction)} (\href{http://arxiv.org/abs/math/0309155}{arXiv:math/0309155}) \end{itemize} \hypertarget{examples_3}{}\subsubsection*{{Examples}}\label{examples_3} \begin{itemize}% \item Alexey Ananyevskiy, \emph{On the algebraic $K$-theory of some homogeneous varieties} (\href{http://www.math.uni-bielefeld.de/lag/man/431.pdf}{pdf}) \end{itemize} [[!redirects algebraic K-theory of a stable (∞,1)-category]] [[!redirects algebraic K-theory of a stable (infinity,1)-category]] \end{document}