\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{algebraic category} \hypertarget{algebraic_categories}{}\section*{{Algebraic categories}}\label{algebraic_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An algebraic category is a [[concrete category]] which behaves very much like the categories familiar from [[algebra]], such as [[Grp]], [[Ring]], and [[Vect]], but characterised in category-theoretic terms. But many other categories are also algebraic, most famously [[compact Hausdorff space|CompHausTop]]; one can describe these in purely algebraic terms, but only using infinitary (perhaps even largely many) operations. There are several definitions of `algebraic' in the literature. Here, we will follow AHS (see references) in using a generous interpretation, but other authors follow Johnstone in using `algebraic' to mean monadic (a stricter requirement), while some authors add finiteness conditions that remove examples such as $Comp Haus Top$. However, all of these notions are related, and we will discuss them here. The definitions in AHS also include an [[evil]] requirement of unique strict lifts of isomorphisms, which serves to fix algebraic categories up to [[isomorphism of categories|isomorphism]] (instead of mere [[equivalence of categories|equivalence]]), which we omit. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $A$ be a [[concrete category]]; that is, $A$ is equipped with a [[forgetful functor]] $U\colon A \to Set$ to the [[Set|category of sets]]. For some authors, such a category is called `concrete' only if $U$ is [[representable functor|representable]], but that follows in all the cases considered below; in particular, if $A$ has free objects (that is, if $U$ has a [[left adjoint]] $F$), then $U$ is representable by $F(1)$, where $1$ is a [[singleton]]. \begin{udefn} The concrete category $A$ is \textbf{algebraic} if the following conditions hold: \begin{itemize}% \item $A$ has [[free objects]]. \item The category $A$ has all binary [[coequalizers]]. \item The forgetful functor $U$ preserves and reflects [[extremal epimorphisms]]. \end{itemize} \end{udefn} \begin{udefn} The concrete category $A$ is \textbf{monadic} if the following conditions hold: \begin{itemize}% \item $A$ has [[free objects]]. \item The [[adjunction]] $F \dashv U$ is [[monadic adjunction|monadic]]. \end{itemize} \end{udefn} \begin{udefn} An algebraic (or monadic) category is \textbf{bounded} if the following condition holds: \begin{itemize}% \item For some [[cardinal number]] $\kappa$ and every $\kappa$-[[directed colimit]] in $A$, the universal [[cocone]] is jointly [[surjection|surjective]] in $Set$. \end{itemize} \end{udefn} \begin{udefn} An algebraic (or monadic) category is \textbf{finitary} if the following condition holds: \begin{itemize}% \item For every finitely [[directed colimit]] in $A$, the universal [[cocone]] is jointly [[surjection|surjective]] in $Set$. \end{itemize} \end{udefn} Note that this is a weakening of the condition that the forgetful functor $U$ is [[finitary functor|finitary]] (that is, that $U$ preserves directed colimits); every universal cocone in $Set$ is jointly surjective, but not conversely. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Every monadic category is algebraic; an algebraic category is monadic if and only if the forgetful functor $U$ preserves [[congruences]]. (AHS 23.41) A category is algebraic if and only if it is a [[reflective subcategory]] of a monadic category with [[regular epimorphism|regular epic]] reflector; given an algebraic category, this monadic category is the [[Eilenberg–Moore category]] of the monad $U \circ F$. (AHS 24.3) Every monadic category is the category of algebras for some [[variety of algebras]], although we must allow potentially a [[proper class]] of infinitary axioms; that is, every monadic category is [[equationally presentable category|equationally presentable]]. Similarly, every algebraic category is the category of algebras for some [[quasivariety of algebras]]; that is, we allow [[conditional statements]] of equations among the axioms. (AHS 24.11) As special cases of the last item: \begin{itemize}% \item A concrete category is bounded monadic if and only if it is equationally presentable (presented by a variety) with a small set of operations (and hence equations). \item A concrete category is bounded algebraic if and only if it is presented by a quasivariety with a small set of operations. \item A concrete category is finitary monadic if and only if it is the category of algebras for some finitary variety; that is, we have only a small set of finitary operations. \item A concrete category is finitary algebraic if and only if it is the category of algebras for some finitary quasivariety. \end{itemize} Also, every algebraic category whose [[forgetful functor]] preserves [[filtered colimits]] is the category of [[models]] for some [[first-order theory]]. The converse is false. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The typical categories studied in [[algebra]], such as [[Grp]], [[Ring]], [[Vect]], etc, are all finitary monadic categories. The [[monad]] $U \circ F$ may be thought of as mapping a set $x$ to the set of words with alphabet taken from $x$ and the connections between letters taken from the appropriate algebraic operations, with two words identified if they can be proved equal by the appropriate algebraic axioms. The category of cancellative [[monoids]] is finitary algebraic but not monadic. The category of [[fields]] is not even algebraic. Assuming the [[ultrafilter principle]], the category of [[compact Hausdorff spaces]] is monadic, but not bounded algebraic. The monad in question takes a set $x$ to the set of [[ultrafilters]] on $x$. (Without the ultrafilter principle, this monad still exists, but it may be quite small, possibly even the [[identity monad]]; passing to [[locales]] does not help.) Similarly, the category of [[Stone space]]s is algebraic, but not monadic or bounded algebraic. \hypertarget{references}{}\subsection*{{References}}\label{references} Our definitions are taken from \begin{itemize}% \item \textbf{AHS}: [[Jiri Adamek|Jiří Adámek]], [[Horst Herrlich]], [[George Strecker]]; \emph{Abstract and Concrete Categories: [[The Joy of Cats]]}, Sections 23 \&{} 24; \href{http://katmat.math.uni-bremen.de/acc}{web}. \end{itemize} Actually, AHS discusses the more general concept of algebraic (etc) \emph{functors}, generalising from $U\colon A \to Set$ to arbitrary functors (not necessarily faithful, not necessarily to $Set$). We actually take our definitions from AHS's characterisation theorems in the case of faithful functors to $Set$. We probably should discuss the more general concept, perhaps at [[algebraic functor]]; we already have [[monadic functor]]. \begin{itemize}% \item [[Peter Johnstone]]; \emph{[[Stone Spaces]]}, Section 3.8 \end{itemize} For Johnstone, a concrete category is `algebraic' if and only if it is monadic. However, Johnstone also discusses [[equationally presentable category|equationally presentable categories]]. [[!redirects algebraic category]] [[!redirects algebraic categories]] [[!redirects bounded algebraic category]] [[!redirects bounded algebraic categories]] [[!redirects finitary algebraic category]] [[!redirects finitary algebraic categories]] [[!redirects monadic category]] [[!redirects monadic categories]] [[!redirects bounded monadic category]] [[!redirects bounded monadic categories]] [[!redirects finitary monadic category]] [[!redirects finitary monadic categories]] \end{document}