\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{algebraic cobordism} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_2nngraded_part}{The (2n,n)-graded part}\dotfill \pageref*{the_2nngraded_part} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{the_oriented_cohomology_theory}{The oriented cohomology theory}\dotfill \pageref*{the_oriented_cohomology_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Algebraic cobordism} is the bigraded [[generalized cohomology theory]] represented by the [[motivic Thom spectrum]] $MGL$. Hence it is the algebraic or [[motives|motivic]] analogue of [[complex cobordism]]. The $(2n,n)$-graded part has a geometric description via [[cobordism]] classes, at least over fields of characteristic zero. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $S$ be a [[scheme]] and $MGL_S$ the [[motivic Thom spectrum]] over $S$. \textbf{Algebraic cobordism} is the [[generalized motivic cohomology theory]] $MGL_S^{*,*}$ represented by $MGL_S$: \ldots{} formula here \ldots{} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_2nngraded_part}{}\subsubsection*{{The (2n,n)-graded part}}\label{the_2nngraded_part} Let $S = Spec(k)$ where $k$ is a field of characteristic zero. A geometric description of the $(2n,n)$-graded part of algebraic cobordism was given by [[Marc Levine]] and [[Fabien Morel]]. More precisely, \hyperlink{LevineMorel}{Levine-Morel} constructed the universal \emph{oriented cohomology theory} $\Omega^* : \Sm_k \to CRing^*$. Here \emph{oriented} signifies the existence of [[direct image]] or [[Gysin homomorphisms]] for [[proper morphisms of schemes]]. This implies the existence of[[Chern classes]] for [[vector bundles]]. \begin{theorem} \label{}\hypertarget{}{} \textbf{(\hyperlink{LevineMorel}{Levine-Morel})}. There is a canonical isomorphism of graded rings \begin{displaymath} \mathbf{L}^* \stackrel{\sim}{\longrightarrow} \Omega^*(\Spec(k)) \end{displaymath} where $\mathbf{L}^*$ denotes the [[Lazard ring]] with an appropriate grading. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{(\hyperlink{LevineMorel}{Levine-Morel})}. Let $i : Z \hookrightarrow X$ be a [[closed immersion]] of smooth $k$-schemes and $j : U \hookrightarrow X$ the complementary [[open immersion]]. There is a canonical exact sequence of graded abelian groups \begin{displaymath} \Omega^{*-d}(Z) \stackrel{i_*}{\to} \Omega^*(X) \stackrel{j^*}{\to} \Omega^*(U) \to 0, \end{displaymath} where $d = \codim(Z, X)$. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{(\hyperlink{LevineMorel}{Levine-Morel})}. Given an embedding $k \hookrightarrow \mathbf{C}$, the canonical homomorphism of graded rings \begin{displaymath} \Omega^*(k) \longrightarrow MU^{2*}(pt) \end{displaymath} is invertible. \end{theorem} \begin{theorem} \label{}\hypertarget{}{} \textbf{(\hyperlink{Levine2008}{Levine 2008})}. The canonical homomorphisms of graded rings \begin{displaymath} \Omega^*(X) \longrightarrow MGL^{2*,*}(X) \end{displaymath} are invertible for all $X \in \Sm_k$. \end{theorem} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[motivic Thom spectrum]] \item [[complex cobordism]] \item [[motivic homotopy theory]] \item [[motivic cohomology]] \item [[algebraic K-theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Vladimir Voevodsky]], \emph{$\mathbf{A}^1$-Homotopy Theory}, Doc. Math., Extra Vol. ICM 1998(I), 417-442, \href{http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/00/Voevodsky.MAN.html}{web}. \item [[Ivan Panin]], K. Pimenov, [[Oliver Röndigs]], \emph{A universality theorem for Voevodsky's algebraic cobordism spectrum}, Homology, Homotopy and Applications, 2008, 10(2), 211-226, \href{http://arxiv.org/abs/0709.4116}{arXiv}. \item [[Ivan Panin]], K. Pimenov, [[Oliver Röndigs]], \emph{On the relation of Voevodsky's algebraic cobordism to Quillen's K-theory}, Inventiones mathematicae, 2009, 175(2), 435-451, \href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.244.7301}{DOI}, \href{http://arxiv.org/abs/0709.4124}{arXiv}. \item [[Markus Spitzweck]], \emph{Algebraic cobordism in mixed characteristic}, \href{http://arxiv.org/abs/1404.2542}{arXiv}. \item [[Marc Hoyois]], \emph{From algebraic cobordism to motivic cohomology}, \href{http://math.mit.edu/~hoyois/papers/hopkinsmorel.pdf}{pdf}, \href{http://arxiv.org/abs/1210.7182}{arXiv}. \item [[Marc Levine]], [[Girja Shanker Tripathi]], \emph{Quotients of MGL, their slices and their geometric parts}, \href{http://arxiv.org/abs/1501.02436}{arXiv:1501.02436}. \end{itemize} A discussion on MathOverflow: \begin{itemize}% \item \emph{Interdependence between A{\tt \symbol{94}}1-homotopy theory and algebraic cobordism}, \href{http://mathoverflow.net/questions/36659/interdependence-between-a1-homotopy-theory-and-algebraic-cobordism/36698#36698}{MO/36659}. \end{itemize} \hypertarget{the_oriented_cohomology_theory}{}\subsubsection*{{The oriented cohomology theory}}\label{the_oriented_cohomology_theory} \begin{itemize}% \item [[Marc Levine]], [[Fabien Morel]], \emph{Cobordisme alg\'e{}brique I}, Note aux C.R. Acad. Sci. Paris, 332 S\'e{}rie I, p. 723--728, 2001 (\href{http://dx.doi.org/10.1016/S0764-4442(01}{doi}01833-X)); \emph{Cobordisme alg\'e{}brique II}, Note aux C.R. Acad. Sci. Paris, 332 S\'e{}rie I, p. 815--820, 2001 (\href{http://dx.doi.org/10.1016/S0764-4442(01}{doi}01832-8)). \item [[Marc Levine]], [[Fabien Morel]], \emph{Algebraic cobordism}, Springer 2007, \href{https://www.uni-due.de/~bm0032/publ/AlgCobordBook4.pdf}{pdf}. \item [[Marc Levine]], \emph{A survey of algebraic cobordism}, \href{http://www.uni-due.de/~bm0032/publ/SurveyAlgCobord.pdf‎}{pdf} \item [[Marc Levine]], \emph{Algebraic cobordism}, Proceedings of the ICM, Beijing 2002, vol. 2, 57--66, \href{http://arxiv.org/abs/math/0304206}{math.KT/0304206} \item [[Marc Levine]], \emph{Three lectures on algebraic cobordism}, University of Western Ontario Mathematics Department, 2005, \href{http://www.uni-due.de/~bm0032/publ/CobordismLec1LS.pdf}{Lecture I}, \href{http://www.uni-due.de/~bm0032/publ/CobordismLec2LS.pdf}{Lecture II}, \href{http://www.uni-due.de/~bm0032/publ/CobordismLec4LS.pdf}{Lecture III}. \item M. Levine, F. Morel, [[Oberwolfach]] Arbeitsgemeinschaft mit aktuellem Thema, April 2005 \href{http://www.ems-ph.org/journals/show_abstract.php?issn=1660-8933&vol=2&iss=2&rank=2}{report}, \href{http://www.ems-ph.org/journals/show_pdf.php?issn=1660-8933&vol=2&iss=2&rank=2}{notes} \end{itemize} A simpler construction was given in \begin{itemize}% \item M. Levine, R. Pandharipande, \emph{Algebraic cobordism revisited}, \href{http://arxiv.org/abs/math/0605196}{math.AG/0605196} \end{itemize} A [[Borel-Moore homology]] version of $MGL^{*,*}$ is considered in \begin{itemize}% \item [[Marc Levine]], \emph{Oriented cohomology, Borel-Moore homology and algebraic cobordism}, \href{http://arxiv.org/abs/0807.2257}{arXiv}. \end{itemize} The comparison with $MGL^{2*,*}$ is in \begin{itemize}% \item [[Marc Levine]], \emph{Comparison of cobordism theories}, Journal of Algebra, 322(9), 3291-3317, 2009, \href{http://arxiv.org/abs/0807.2238}{arXiv}. \end{itemize} The construction was extended to [[derived algebraic geometry|derived schemes]] in the paper \begin{itemize}% \item [[Parker Lowrey]], [[Timo Schuerg]]. \emph{Derived algebraic bordism}, 2012, \href{http://arxiv.org/abs/1211.7023}{arXiv:1211.7023}. \end{itemize} The close connection of algebraic cobordism with [[K-theory]] is discussed in \begin{itemize}% \item Jos\'e{} Luis Gonz\'a{}lez, Kalle Karu. \emph{Universality of K-theory}. 2013. \href{http://arxiv.org/abs/1301.3815}{arXiv:1301.3815}. \end{itemize} An algebraic analogue of h-cobordism: \begin{itemize}% \item Aravind Asok, Fabien Morel, \emph{Smooth varieties up to $\mathbb{A}^1$-homotopy and algebraic h-cobordisms}, \href{http://arxiv.org/abs/0810.0324}{arXiv:0810.0324} \end{itemize} \end{document}