\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{algebraic group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{linear_algebraic_groups_and_abelian_varieties}{Linear algebraic groups and abelian varieties}\dotfill \pageref*{linear_algebraic_groups_and_abelian_varieties} \linebreak \noindent\hyperlink{linear_algebraic_group}{Linear algebraic group}\dotfill \pageref*{linear_algebraic_group} \linebreak \noindent\hyperlink{abelian_variety}{Abelian variety}\dotfill \pageref*{abelian_variety} \linebreak \noindent\hyperlink{elliptic_curve}{Elliptic curve}\dotfill \pageref*{elliptic_curve} \linebreak \noindent\hyperlink{other_prominent_classes_of_algebraic_groups}{Other prominent classes of algebraic groups}\dotfill \pageref*{other_prominent_classes_of_algebraic_groups} \linebreak \noindent\hyperlink{jacobian}{Jacobian}\dotfill \pageref*{jacobian} \linebreak \noindent\hyperlink{unipotent_algebraic_groups}{Unipotent algebraic groups}\dotfill \pageref*{unipotent_algebraic_groups} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a (typically [[algebraically closed field|algebraically closed]]) field $k$, an \textbf{algebraic $k$-group} is a [[group object]] in the category of $k$-[[algebraic variety|varieties]]. \hypertarget{linear_algebraic_groups_and_abelian_varieties}{}\subsection*{{Linear algebraic groups and abelian varieties}}\label{linear_algebraic_groups_and_abelian_varieties} There are two important classes of algebraic groups whose intersection is trivial (the identity group): Linear algebraic groups and abelian varieties. Any algebraic group contains a unique normal linear algebraic subgroup $H$ such that their quotient $G/H$ is an abelian variety. \hypertarget{linear_algebraic_group}{}\subsubsection*{{Linear algebraic group}}\label{linear_algebraic_group} An algebraic $k$-group is [[linear algebraic group|linear]] if it is a [[Zariski topology|Zariski]]-closed subgroup of the [[general linear group]] $GL(n,k)$ for some $n$. An algebraic group is linear iff it is affine. An algebraic group scheme is \emph{affine} if the underlying scheme is [[affine scheme|affine]]. The category of affine group schemes is the [[opposite category|opposite]] of the category of commutative [[Hopf algebras]]. \hypertarget{abelian_variety}{}\subsubsection*{{Abelian variety}}\label{abelian_variety} Another important class are connected algebraic $k$-groups whose underlying variety is [[projective variety|projective]]; these are automatically commutative so they are called \emph{abelian varieties}. In dimension $1$ these are precisely the [[elliptic curve]]s. If $k$ is a [[perfect field]] and $G$ an algebraic $k$-group, the theorem of Chevalley says that there is a unique linear subgroup $H\subset G$ such that $G/H$ is an abelian variety. \hypertarget{elliptic_curve}{}\paragraph*{{Elliptic curve}}\label{elliptic_curve} An abelian variety of dimension $1$ is called an \emph{[[elliptic curve]]}. \hypertarget{other_prominent_classes_of_algebraic_groups}{}\subsection*{{Other prominent classes of algebraic groups}}\label{other_prominent_classes_of_algebraic_groups} Some of the definitions of the following classes exist more generally for [[group schemes]]. \hypertarget{jacobian}{}\subsubsection*{{Jacobian}}\label{jacobian} (\ldots{}) \hypertarget{unipotent_algebraic_groups}{}\subsubsection*{{Unipotent algebraic groups}}\label{unipotent_algebraic_groups} (See also more generally [[unipotent group scheme]].) \begin{defn} \label{}\hypertarget{}{} An element $x$ of an affine algebraic group is called \emph{unipotent} if its associated right translation operator $r_x$ on the affine [[coordinate ring]] $A[G]$ of $G$ is locally unipotent as an element of the ring of linear endomorphism of $A[G]$ where `'locally unipotent'` means that its restriction to any finite dimensional stable subspace of $A[G]$ is unipotent as a ring object. \end{defn} \begin{theorem} \label{}\hypertarget{}{} ([[Jordan-Chevalley decomposition]]) Any commutative linear algebraic group over a perfect field is the product of a unipotent and a [[semisimple object|semisimple algebraic group]]. \end{theorem} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The group objects in the category of [[algebraic schemes]] and [[formal scheme]]s are called (algebraic) [[group schemes]] and [[formal groups]], respectively. Among group schemes are `the infinite-dimensional algebraic groups' of Shafarevich. Algebraic analogues of [[loop group]]s are in the category of [[ind-scheme]]s. All linear algebraic $k$-groups are affine. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The [[affine line]] $\mathbb{A}^1$ comes canonically with the structure of a group under addition: the [[additive group]] $\mathbb{G}_a$. The affine line without its origin, $\mathbb{A}^1 - \{0\}$ comes canonically with the structure of a group under multiplication: the [[multiplicative group]] $\mathbb{G}_m$. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \begin{itemize}% \item [[group scheme]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[isogeny]] \item [[form of an algebraic group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The standard references are \begin{itemize}% \item M. Demazure, P. Gabriel, \emph{Groupes algebriques}, tome 1 (later volumes never appeared), Mason and Cie, Paris 1970; English edition is \emph{Introduction to algebraic geometry and algebraic groups}, North-Holland, Amsterdam 1980 (North-Holland) \item [[SGA3]] \emph{Sch\'e{}mas en groupes, 1962--1964, Lecture Notes in Mathematics 151, 152 and 153, 1970} \item M. Artin, J. E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud, J.-P. Serre, \emph{Schemas en groupes}, i.e. SGA III-1, III-2, III-3 \item A. Borel, \emph{Linear algebraic groups}, Springer (2nd edition much expanded) \item W. Waterhouse, \emph{Introduction to affine group schemes}, GTM 66, Springer 1979. \item S. Lang, \emph{Abelian varieties}, Springer 1983. \item D. Mumford, \emph{Abelian varieties}, 1970, 1985. \item J. C. Jantzen, \emph{Representations of algebraic groups}, Acad. Press 1987 (Pure and Appl. Math. vol 131); 2nd edition AMS Math. Surveys and Monog. 107 (2003; reprinted 2007) \item T. Springer, \emph{Linear algebraic groups}, Progress in Mathematics 9, Birkh\"a{}user Boston (2nd ed. 1998, reprinted 2008) \item Roe Goodman, Nolan R. Wallach, Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht, 2009. \item J. Milne, \emph{Algebraic groups, Lie Groups, and their arithmetic subgroups}, \href{http://www.jmilne.org/math/CourseNotes/ALA.pdf}{pdf} \item [[!redirects algebraic groups]] \end{itemize} \end{document}