\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{algebraic lattice} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Def}{Definition}\dotfill \pageref*{Def} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_category_of_algebraic_lattices}{The category of algebraic lattices}\dotfill \pageref*{the_category_of_algebraic_lattices} \linebreak \noindent\hyperlink{RelationToLocallyFinitelyPresentableCategories}{Relation to locally finitely presentable categories}\dotfill \pageref*{RelationToLocallyFinitelyPresentableCategories} \linebreak \noindent\hyperlink{congruence_lattices}{Congruence lattices}\dotfill \pageref*{congruence_lattices} \linebreak \noindent\hyperlink{completely_distributive_lattices}{Completely distributive lattices}\dotfill \pageref*{completely_distributive_lattices} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Def}{}\subsection*{{Definition}}\label{Def} \begin{defn} \label{}\hypertarget{}{} An \textbf{algebraic lattice} is a [[lattice]] which is \begin{itemize}% \item a [[complete lattice]]; \item such that every element is a [[join]] of [[compact elements]]. \end{itemize} \end{defn} An \textbf{algebraic lattice} is a [[complete lattice]] (equivalently, a [[suplattice]], or in different words a [[poset]] with the [[extra property|property]] of having arbitrary [[colimits]] but with the [[structure]] of [[directed colimits]]/[[directed joins]]) in which every element is the [[supremum]] of the [[compact element]]s below it (an element $e$ is compact if, for every subset $S$ of the lattice, $e$ is less than or equal to the supremum of $S$ just in case $e$ is less than or equal to the supremum of some finite subset of $S$). Here is an alternative formulation: \begin{defn} \label{}\hypertarget{}{} An algebraic lattice is a [[poset]] which is [[locally finitely presentable category|locally finitely presentable]] as a category. \end{defn} This formulation suggests a useful way of viewing algebraic lattices in terms of [[Gabriel-Ulmer duality]] (but with regard to enrichment in [[truth values]], instead of in $Set$). As this last formulation suggests, algebraic lattices typically arise as [[subobject lattices]] for objects in locally finitely presentable categories. As an example, for any (finitary) [[Lawvere theory]] $T$, the subobject lattice of an object in $T$-$Alg$ is an algebraic lattice (this class of examples explains the origin of the term ``algebraic lattice'', which is due to Garrett Birkhoff). In fact, all algebraic lattices arise this way (see Theorem \ref{GS} below). It is trivial that every finite lattice is algebraic. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_category_of_algebraic_lattices}{}\subsubsection*{{The category of algebraic lattices}}\label{the_category_of_algebraic_lattices} The [[morphisms]] most commonly considered between algebraic lattices are the [[finitary functors]] between them, which is to say, the [[Scott topology|Scott-continuous]] functions between them; i.e., those functions which preserve directed joins (hence the parenthetical remarks \hyperlink{Def}{above}). The resulting category \textbf{AlgLat} is [[cartesian closed]] and is dually equivalent to the category whose objects are [[meet semilattices]] (construed as categories with [[finite limits]] [[enriched category|enriched]] over [[truth values]]) and whose morphisms are meet-preserving [[profunctors]] between them (using the convention that a $V$-enriched profunctor from $C$ to $D$ is a functor $D^{op} \times C \rightarrow V$; of course, with an opposite convention, one could similarly state a covariant equivalence). There is a \emph{full} [[full embedding|embedding]] \begin{displaymath} i \colon AlgLat \to Top_0 \end{displaymath} to the category of $T_0$-[[separation axioms|spaces]], taking an algebraic lattice $L$ to the space whose points are elements of $L$, and whose [[open sets]] $U$ are defined by the property that their [[characteristic maps]] \begin{displaymath} \chi_U: L \to \mathbf{2} \end{displaymath} ($\chi_U(a) = 1$ if $a \in U$, else $\chi_U(a) = 0$) are poset maps that preserve [[directed colimits]]. The [[specialization order]] of $i(L)$ is $L$ again. Every $T_0$-space $X$ occurs as a [[subspace]] of some space $i(L)$ associated with an algebraic lattice. Explicitly, let $L(X)$ be the [[power set]] of the underlying set of the [[topology]], $P{|\mathcal{O}(X)|}$, and define \begin{displaymath} X \to (i\circ L)(X) \end{displaymath} to take $x$ to $N(x) \coloneqq \{U \in \mathcal{O}(X): x \in U\}$. This gives a topological embedding of $X$ in $i(L(X))$. \begin{uremark} On similar grounds, if $U \colon AlgLat \to Set$ is the forgetful functor, then the \href{http://ncatlab.org/nlab/show/stuff%2C+structure%2C+property#a_factorisation_system_14}{2-image} of the projection functor $\pi \colon Set\downarrow U \to Set$ is the category of topological spaces $Top$. In more nuts-and-bolts terms, an object $(S, L, f \colon S \to U(L))$ gives a space with underlying set $S$ and open sets those of the form $f^{-1}(O)$, where $O$ ranges over the Scott topology on $L$. Notice that if $(f \colon S \to S', g \colon L \to L')$ is a morphism in $Set \downarrow U$, then $f$ is continuous with respect to these topologies. Therefore the projection $\pi \colon Set \downarrow U \to Set$ factors through the faithful forgetful functor $Top \to Set$. Thus, working in the factorization system (eso+full, faithful) on $Cat$, we have a faithful functor $2$-$im(\pi) \to Top$ filling in as the diagonal \begin{displaymath} \itexarray{ Set \downarrow U & \to & Top \\ \downarrow & \nearrow & \downarrow \\ 2\text{-}im(\pi) & \to & Set. } \end{displaymath} But notice also that $Set \downarrow U \to Top$ is \href{http://ncatlab.org/nlab/show/ternary+factorization+system#examples_9}{eso and full}. It is eso because any topology $\mathcal{O}(S)$ on $S$ can be reconstituted from the triple $(S, P{|\mathcal{O}(S)|}, x \mapsto N(x) \colon S \to P{|\mathcal{O}(S)|})$. We claim it is full as well. For, every continuous map $X \to X'$ between topological spaces induces a continuous map between their $T_0$ reflections $X_0 \to X_{0}'$, and since algebraic lattices like $P{|\mathcal{O}(X)|}$ (being continuous lattices) are [[injective objects]] in the category of $T_0$ spaces, we are able to complete to a diagram \begin{displaymath} \itexarray{ X & \to & X_0 & \to & P{|\mathcal{O}(X)|} \\ \downarrow & & \downarrow & & \downarrow \\ X' & \to & X_{0}' & \to & P{|\mathcal{O}(X')|} } \end{displaymath} where the rightmost vertical arrow is Scott-continuous (and the horizontal composites are of the form $x \mapsto N(x)$). Finally, since $Set \downarrow U \to Top$ is eso and full, it follows that $2$-$im(\pi) \to Top$ is eso, full, and faithful, and therefore an equivalence of categories. This connection is explored in more depth with the category of [[equilogical spaces]], which can be seen either as a category of (set-theoretic) [[equivalence relation|partial equivalence relations]] over $AlgLat$, or equivalently of (set-theoretic) total [[equivalence relations]] on $T_0$ topological spaces. \end{uremark} \hypertarget{RelationToLocallyFinitelyPresentableCategories}{}\subsubsection*{{Relation to locally finitely presentable categories}}\label{RelationToLocallyFinitelyPresentableCategories} One of our definitions of algebraic lattice is: a poset $L$ which is locally finitely presentable when viewed as a category. The completeness of $L$ means that right adjoints $L \to Set$ are representable, given by $L(p, -) \colon L \to Set$, and we are particularly interested in those representable functors that preserve [[filtered colimits]]. These correspond precisely to finitely presentable objects $p$, which in lattice theory are usually called compact elements. These compact elements are closed under finite joins. By [[Gabriel-Ulmer duality]], $L$ is determined from the join-semilattice of compact elements $K$ by $L \cong Lex(K^{op}, Set)$. Since the elements of $K^{op}$ are subterminal, we can also write $L \cong Lex(K^{op}, 2)$ where $2 = Sub(1)$. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Porst)} If $C$ is a [[locally finitely presentable category]] and $X$ is an object of $C$, then \begin{itemize}% \item The lattice of subobjects $Sub(X)$, \item the lattice of quotient objects (equivalence classes of epis sourced at $X$) $Quot(X)$, \item the lattice of congruences (internal equivalence relations) on $X$ \end{itemize} are all algebraic lattices. \end{theorem} This is due to \hyperlink{Porst}{Porst}. Of course if $C$ is the category of algebras of an Lawvere theory, then the lattice of quotient objects of an algebra is isomorphic to its congruence lattice, as such $C$ is an [[exact category]]. \hypertarget{congruence_lattices}{}\subsubsection*{{Congruence lattices}}\label{congruence_lattices} The following result is due to Gr\"a{}tzer and Schmidt: \begin{theorem} \label{GS}\hypertarget{GS}{} Every algebraic lattice is isomorphic to the congruence lattice of some [[model]] $X$ of some finitary algebraic theory. \end{theorem} In particular, since every finite lattice is algebraic, every finite lattice arises this way. Remarkably, it is not known at this time whether every finite lattice arises as the congruence lattice of a \emph{finite} algebra $X$. It has been conjectured that this is in fact \textbf{false}: see this \href{http://mathoverflow.net/a/196074/2926}{MO discussion}. Another problem which had long remained open is the congruence lattice problem: is every \emph{distributive} algebraic lattice the congruence lattice (or lattice of quotient objects) of some lattice $L$? The answer is negative, as shown by Wehrung in 2007: see this \href{http://en.m.wikipedia.org/wiki/Congruence_lattice_problem}{Wikipedia article}. \hypertarget{completely_distributive_lattices}{}\subsubsection*{{Completely distributive lattices}}\label{completely_distributive_lattices} \begin{prop} \label{}\hypertarget{}{} The category of [[Alexandroff locales]] is equivalent to that of [[completely distributive lattice|completely distributive]] algebraic lattices. \end{prop} This appears as (\hyperlink{Caramello}{Caramello, remark 4.3}). The [[completely distributive lattice|completely distributive]] algebraic lattices form a [[reflective subcategory]] of that of all distributive lattices. The reflector is called \emph{[[canonical extension]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} See also [[compact element]], [[compact element in a locale]]. [[!include locally presentable categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Andrej Bauer]], [[Lars Birkedal]], [[Dana Scott]], \emph{Equilogical Spaces}, Theoretical Computer Science, 315(1):35-59, 2004. (\href{http://math.andrej.com/2002/07/05/equilogical-spaces/}{web}) \item Olivia Caramello, \emph{A topos-theoretic approach to Stone-type dualities} (\href{http://arxiv.org/abs/1103.3493}{arXiv:1103.3493}) \end{itemize} The relation to [[locally finitely presentable categories]] is discussed in \begin{itemize}% \item [[Hans Porst]], \emph{Algebraic lattices and locally finitely presentable categories} (\href{http://www.math.uni-bremen.de/~porst/dvis/PORST_AlgebraicLattices_revfinAU.pdf}{pdf}) \end{itemize} That every algebraic lattice is a congruence lattice is proved in \begin{itemize}% \item G. Gr\"a{}tzer and E. T. Schmidt, \emph{Characterizations of congruence lattices of abstract algebras}, Acta Sci. Math. (Szeged) 24 (1963), 34--59. \end{itemize} [[!redirects algebraic lattice]] [[!redirects algebraic lattices]] \end{document}