\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{alternating multifunction} \hypertarget{alternating_functions}{}\section*{{Alternating functions}}\label{alternating_functions} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{constructive_aspects}{Constructive aspects}\dotfill \pageref*{constructive_aspects} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[linear algebra]], alternating [[multilinear functions]] are well known, and are in many cases (over the [[real numbers]], for example) are equivalent to [[antisymmetric multifunction|antisymmetric functions]]. In cases where they differ (such as in [[characteristic]] $2$), it is often the alternating functions that behave better. Actually, being alternating is not, in itself, really about linearity, and we can abstract away to a nonlinear concept of \emph{alternating function}. (That said, there is one bit of very mild linear structure that is needed: a [[basepoint]] in the [[target]] set.) The property of being alternating is called \emph{alternation} (rather than alternatingess), although in principle one could also use \emph{alternating} as a noun. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $X$ be a [[set]], and let $(Y,0)$ be a [[pointed set]] (so $Y$ is a set and $0$ is one of its elements). Let $n$ be a [[natural number]] (or indeed any [[cardinal number]]). Recall that a [[multifunction]] of [[arity]] $n$ to $Y$ from $X$ is the same thing as a [[function]] to $Y$ from the $n$-fold [[cartesian power]] $X^n$. An \textbf{alternating multifunction} (or simply \emph{alternating function}) of arity $n$ from $X$ to $(Y,0)$ is a multifunction of arity $n$ from $X$ to $Y$ such that, whenever two of the function's arguments are equal, the value of the function is $0$. In arity $0$ or $1$, every multifunction is trivially alternating; in arity $2$, we can write this as the [[equational law]] $f(a,a) = 0$; in arity $3$, we have the equational laws $f(a,a,b) = 0$, $f(a,b,a) = 0$, and $f(a,b,b) = 0$; etc. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} There are many nice properties of alternating \emph{[[multilinear function|multilinear]]} functions. So suppose that $X$ and $Y$ are [[modules]] over a [[base rig]] $K$ and that $f$ is a multilinear function from $X$ to $Y$; use the usual [[zero]] element of the module $Y$ as the basepoint $0$. In the case where $Y$ is $K$ itself, we speak of an \textbf{alternating form} (a phrase which is usually taken to include multilinearity). We will sometimes want to assume that scalar multiplication by $2$ is cancellable in $Y$ (which for example is always the case when $2$ is invertible in $K$, in particular when $K$ is a [[field]] of [[characteristic]] other than $2$), but only when stated. Since alternation requires looking at two arguments of $f$, we will often, when this leads to no loss of generality, assume that these are the first two arguments, writing $\vec{z}$ to represent all of the other arguments. \begin{prop} \label{alterationImpliesAntisymmetry}\hypertarget{alterationImpliesAntisymmetry}{} An alternating [[multilinear function]] is [[antisymmetric function|antisymmetric]]. \end{prop} \begin{proof} \begin{displaymath} f(x+y,x+y,\vec{z}) = f(x,x,\vec{z}) + f(x,y,\vec{z}) + f(y,x,\vec{z}) + f(y,y,\vec{z}) . \end{displaymath} Applying alternation, most of these terms vanish: \begin{displaymath} 0 = 0 + f(x,y,\vec{z}) + f(y,x,\vec{z}) + 0 . \end{displaymath} Therefore, \begin{displaymath} f(x,y,\vec{z}) + f(y,x,\vec{z}) = 0 , \end{displaymath} which is antisymmetry. \end{proof} \begin{prop} \label{antisymmetryImpliesAlternation}\hypertarget{antisymmetryImpliesAlternation}{} If multiplication by $2$ is cancellable in $Y$, then an [[antisymmetric function|antisymmetric]] function to $Y$ is alternating. \end{prop} \begin{proof} By antisymmetry, \begin{displaymath} f(x,x,\vec{z}) + f(x,x,\vec{z}) = 0 , \end{displaymath} or equivalently \begin{displaymath} 2 f(x,x,\vec{z}) = 2 \cdot 0 . \end{displaymath} Cancelling $2$, \begin{displaymath} f(x,x,\vec{z}) = 0 , \end{displaymath} which is alternation. \end{proof} \begin{remark} \label{antisymmetryWarning}\hypertarget{antisymmetryWarning}{} It is false in both directions to state in general that alternating functions and antisymmetric functions are the same, but for different reasons. An alternating function must be antisymmetric \emph{if} it is multilinear, regardless of the behaviour of $2$, but not when it is nonlinear; an antisymmetric function must be alternating \emph{if} multiplication by $2$ is cancellable in the target, regardless of linearity, but not when $2$ is noncancellable. The simplest strongest-possible counterexamples are \begin{displaymath} (x,y \mapsto |y-x|)\colon \mathbb{R}^2 \to \mathbb{R} , \end{displaymath} which is alternating but not antisymmetric, and \begin{displaymath} (x,y \mapsto x y)\colon \mathbb{F}_2^2 \to \mathbb{F}_2 , \end{displaymath} which is antisymmetric but not alternating. Of course, alternating and antisymmetric functions \emph{are} the same in the context of multilinear functions to a module in which $2$ is cancellable, in particular for multilinear functions between [[vector fields]] over the [[real numbers]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[alternating groups]] are really about antisymmetric functions rather than alternating functions as such. (Whereas a [[symmetric function]] is preserved by the application of any element of the [[symmetric group]], an antisymmetric function is preserved by and only by the elements of the alternating group.) Nevertheless, this precise distinction between `alternating' and `antisymmetric' is well established in the theory of vector spaces over a field of [[characteristic]] $2$ (in which multiplication by $2$ is as uncancellable as possible). \end{remark} \hypertarget{constructive_aspects}{}\subsection*{{Constructive aspects}}\label{constructive_aspects} In [[constructive mathematics]], we usually assume that the arity $n$ of $f$ has [[decidable equality]], which is true if $n$ is a [[natural number]] (which is most common) or even a (possibly infinite) [[extended natural number]]. However, as long as the arity is equipped with an [[inequality]], then we can state the definition: whenever equal arguments have inequal indices, the value of the multifunction $f$ there is zero. If $X$ and $Y$ are also equipped with inequalities, then $f$ is \textbf{strongly alternating} if, whenever its value is inequal to $0$ in $Y$, then arguments with inequal indices must be inequal in $X$. (In arity $2$, for example, if $f(a,b) \ne 0$, then $a \ne b$.) If the inequality on $Y$ is [[tight relation|tight]] (so that its [[negation]] is [[equality]] in $Y$), then every strongly alternating function is alternating, but the reverse requires [[excluded middle]] in general. [[!redirects alternating multifunction]] [[!redirects alternating multifunctions]] [[!redirects alternating multimap]] [[!redirects alternating multimaps]] [[!redirects alternating function]] [[!redirects alternating functions]] [[!redirects alternating map]] [[!redirects alternating maps]] [[!redirects alternating multilinear function]] [[!redirects alternating multilinear functions]] [[!redirects alternating multilinear map]] [[!redirects alternating multilinear maps]] [[!redirects alternating form]] [[!redirects alternating forms]] \end{document}