\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{analysis} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{entries_related_to_analysis}{Entries related to analysis}\dotfill \pageref*{entries_related_to_analysis} \linebreak \noindent\hyperlink{on_mainstream_analysis}{On mainstream analysis}\dotfill \pageref*{on_mainstream_analysis} \linebreak \noindent\hyperlink{on_foundations}{On foundations}\dotfill \pageref*{on_foundations} \linebreak \noindent\hyperlink{on_smoothness_and_generalized_lie_theory}{On smoothness and generalized Lie theory}\dotfill \pageref*{on_smoothness_and_generalized_lie_theory} \linebreak \noindent\hyperlink{on_geometric_function_theory_and_quantization}{On geometric function theory and quantization}\dotfill \pageref*{on_geometric_function_theory_and_quantization} \linebreak \noindent\hyperlink{on_quantization_and_the_geometry_of_differential_operators}{On quantization and the geometry of differential operators}\dotfill \pageref*{on_quantization_and_the_geometry_of_differential_operators} \linebreak \noindent\hyperlink{on_contructivism_and_computable_analysis}{On contructivism and computable analysis}\dotfill \pageref*{on_contructivism_and_computable_analysis} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{ReferencesGeneral}{General}\dotfill \pageref*{ReferencesGeneral} \linebreak \noindent\hyperlink{ReferencesConstructiveAnalysis}{Constructive analysis}\dotfill \pageref*{ReferencesConstructiveAnalysis} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} In [[mathematics]], \emph{analysis} usually refers to any of a broad family of fields that deals with a general theory of \emph{[[limit of a sequence|limits]]} in the sense of [[convergence]] of [[sequences]] (or more generally of [[nets]]), particularly those fields that pursue developments that originated in ``the [[calculus]]'', i.e., the theory of [[differentiation]] ([[differential calculus]]) and [[integration]] ([[integral calculus]]) of [[real numbers|real]] and [[complex numbers|complex]]-valued [[functions]]. The classical foundation of this general subject is usually based on the idea that the [[real numbers|real number system]] is describable as the (essentially unique) [[complete space|complete]] [[ordered field]], or more generally on the concept of [[metric spaces]]. Their [[distance]] functions allow to formalize concepts like [[continuous functions|continuity]] and [[convergence]] in terms of existence of sufficiently small [[open balls]]. Many concepts of this ``[[epsilontic analysis]]'' have equivalent formulations in terms of simple [[combinatorics]] of [[open subsets]] with respect to the [[metric topology]] of metric spaces, and this way the field of analysis has a large overlap with the field of \emph{[[topology]]}, this is particularly true for [[functional analysis]] and the theory of [[topological vector spaces]]. Analysis can also refer to other responses to the problem of founding these developments, especially ``[[infinitesimal analysis]]'' which admits [[infinitesimal quantities]] not found in the classical real number system and which takes various forms, for example the [[nonstandard analysis]] first introduced by [[Abraham Robinson]], or ``[[synthetic differential geometry|synthetic differential analysis]]'' whose rigorous foundations were largely introduced by [[William Lawvere]] and other [[category theory|category theorists]] who, following the example of [[Alexander Grothendieck]], consider [[nilpotent infinitesimals]] (instead of invertible ones \`a{} la Robinson) as a basis for understanding [[differentiation]]. \hypertarget{entries_related_to_analysis}{}\subsection*{{Entries related to analysis}}\label{entries_related_to_analysis} \hypertarget{on_mainstream_analysis}{}\subsubsection*{{On mainstream analysis}}\label{on_mainstream_analysis} Some of the $n$lab entries related to \textbf{mathematical analysis} include [[metric space]], [[normed vector space]], [[metric topology]], [[sequence]], [[net]], [[convergence]], [[functional analysis]], [[harmonic analysis]], [[complex analysis]], [[Weierstrass preparation theorem]], [[several complex variables]], [[Fourier transform]], [[Pontrjagin dual]], [[differential geometry]], [[Legendre polynomial]], [[dilogarithm]], [[Hilbert space]], [[Banach space]], [[Banach algebra]], [[topological vector space]], [[locally convex space]], [[operator algebras]], [[Gelfand spectrum]], [[measure space]], [[measurable function]], [[Lebesgue space]], [[Sobolev space]], [[bounded operator]], [[compact operator]], [[Fredholm operator]], [[distribution]] (generalized function), [[hyperfunction]].[[spectral theory]], [[integral]], [[integration]]\ldots{}and a book entry [[Handbook of analysis and its foundations]]. Many of the basic notions used in analysis courses are described in $n$lab in the more general [[topology|topological]] context if they belong there, e.g. [[compact space]], [[continuous map]], [[compact-open topology]] and so on. Many of the aspects of [[analytic geometry]] are treated in terms of Riemann surfaces, [[monodromy]], [[local system]]s and so on. \hypertarget{on_foundations}{}\subsubsection*{{On foundations}}\label{on_foundations} Alternative [[foundations]], especially [[constructive mathematics|constructive]] and those using [[topos theory]], are of traditional interest to the [[category theory]] community. For example the [[synthetic differential geometry]] of Lawvere and Kock (more in next paragraph) and the [[nonstandard analysis]] of Robinson, and its variant, [[internal set]] theory of Nelson are some of the principal examples. See also [[Fermat theory]], [[natural numbers object]], [[infinitesimal number]] etc. Many statements are about the versions without the [[axiom of choice]] and so on; we like to state clean and minimal conditions when possible. \hypertarget{on_smoothness_and_generalized_lie_theory}{}\subsubsection*{{On smoothness and generalized Lie theory}}\label{on_smoothness_and_generalized_lie_theory} Various smoothness concepts in geometry, rarely studied in standard courses of analysis, but sometimes relevant, were studied to fair extent (and sometimes with innovations) in the $n$lab. These smoothness concepts are built using some primitive notions in rather generalized (often categorical) setups: [[Kähler differential]], [[differential form]], [[tangent space]], [[jet bundles]], resolution of diagonal, [[infinitesimal object]], [[microlinear space]], [[generalized smooth algebra]], [[tangent category]], [[cotangent complex]] as defining ingredients of various notions of smoothness and smooth spaces. Main framework to systematize in geometry similar notion studied in $n$lab is [[synthetic differential geometry]] but many other examples are also represented. Let us mention [[generalized smooth space]], [[stratifold]], [[Frölicher space]], and some graded and super analogues ([[supermanifold]], [[NQ-supermanifold]], [[integration over supermanifolds]]); some concepts of smoothness are rather algebraic, e.g. [[formal smoothness]] of [[Grothendieck]]; see also [[algebraic approaches to differential calculus]]. Special attention in $n$lab has been paid to smooth group like objects like [[Lie group]], [[Lie groupoid]] and their superanalogues and [[categorification]]s, as well as to their tangent structures like [[Lie algebroids]] and their interrelations ([[Lie theory]]: [[integration]], [[Lie integration]]). \hypertarget{on_geometric_function_theory_and_quantization}{}\subsubsection*{{On geometric function theory and quantization}}\label{on_geometric_function_theory_and_quantization} Some other entries are related to the conceptual and categorical understanding of Feynman [[path integral]], however so far from physical, conceptual and formal point of view only (and not of analytic theory). This is closely related to understanding various higher categorical spaces of [[sections]] in geometry and in study of sigma-models in physics. This is here called [[geometric function theory]] (cf. [[space and quantity]], [[geometric quantization]]\ldots{}). \hypertarget{on_quantization_and_the_geometry_of_differential_operators}{}\subsubsection*{{On quantization and the geometry of differential operators}}\label{on_quantization_and_the_geometry_of_differential_operators} Very relevant for [[quantization]] is also the geometric study of differential operators (see [[D-geometry]], [[diffiety]]) and distributions (cf. [[microlocal analysis]]), by analysis of oscillating integrals ([[semiclassical approximation]]), [[symplectic geometry]] (esp. the geometry of [[lagrangian submanifold]]s which could often be viewed as quantum points) etc. Some of the topological properties of differential operators are studied in [[index theory]], where special role have so called [[Dirac operator]]s. Sometimes it is possible or even useful to avoid fine analysis by using the [[algebraic approaches to differential calculus]] and [[regular differential operator|differential operators]], what also makes possible some noncommutative analogues. \hypertarget{on_contructivism_and_computable_analysis}{}\subsubsection*{{On contructivism and computable analysis}}\label{on_contructivism_and_computable_analysis} \begin{itemize}% \item [[constructive analysis]], [[computable analysis]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[epsilontic analysis]] \item [[infinitesimal analysis]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{ReferencesGeneral}{}\subsubsection*{{General}}\label{ReferencesGeneral} Textbooks include \begin{itemize}% \item [[Walter Rudin]], \emph{Principles of Mathematical Analysis}, McGraw-Hill (1964, 1976) (\href{https://notendur.hi.is/vae11/%C3%9Eekking/principles_of_mathematical_analysis_walter_rudin.pdf}{pdf}) \item [[Eric Schechter]], \emph{[[Handbook of Analysis and its Foundations]]}, Academic Press (1996) (\href{http://www.math.vanderbilt.edu/~schectex/ccc/}{web}) \end{itemize} Discussion of the history, amplifying its roots all the way back in [[Zeno's paradoxes of motion]] is in \begin{itemize}% \item Carl Benjamin Boyer, \emph{The history of the Calculus and its conceptual development}, Dover 1949 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Mathematical_analysis}{Mathematical analysis}} \end{itemize} See also the references at \emph{[[calculus]]}. \hypertarget{ReferencesConstructiveAnalysis}{}\subsubsection*{{Constructive analysis}}\label{ReferencesConstructiveAnalysis} The formulation of [[analysis]] in [[constructive mathematics]], hence [[constructive analysis]], was maybe inititated in \begin{itemize}% \item [[Errett Bishop]], \emph{Foundations of constructive analysis.} McGraw-Hill, (1967) \end{itemize} together with the basic notion of [[Bishop set]]/[[setoid]]. Implementations of constructive [[real number]] analysis in [[type theory]] implemented in [[Coq]] are discussed in \begin{itemize}% \item R. O'Connor, \emph{A Monadic, Functional Implementation of Real Numbers}. MSCS, 17(1):129-159, 2007 (\href{http://arxiv.org/abs/cs/0605058}{arXiv:0605058}) \item R. O'Connor, \emph{Certified exact transcendental real number computation in Coq}, In TPHOLs 2008, LNCS 5170, pages 246--261, 2008. \item R. O'Connor, \emph{Incompleteness and Completeness: Formalizing Logic and Analysis in Type Theory}, PhD thesis, Radboud University Nijmegen, 2009. \item Robbert Krebbers, [[Bas Spitters]], \emph{Type classes for efficient exact real arithmetic in Coq} (\href{http://arxiv.org/abs/1106.3448/}{arXiv:1106.3448}) \end{itemize} [[!redirects mathematical analysis]] \end{document}