\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{anomalous magnetic moment} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_qunantum_field_theory}{}\paragraph*{{Algebraic Qunantum Field Theory}}\label{algebraic_qunantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Anomalies}{Anomalies}\dotfill \pageref*{Anomalies} \linebreak \noindent\hyperlink{contributions}{Contributions}\dotfill \pageref*{contributions} \linebreak \noindent\hyperlink{qed_contributions}{QED contributions}\dotfill \pageref*{qed_contributions} \linebreak \noindent\hyperlink{QuantumGravityCorrection}{Quantum gravity contributions}\dotfill \pageref*{QuantumGravityCorrection} \linebreak \noindent\hyperlink{axion_contributions}{Axion contributions}\dotfill \pageref*{axion_contributions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{experiment_and_deviation}{Experiment and deviation}\dotfill \pageref*{experiment_and_deviation} \linebreak \noindent\hyperlink{qed_contributions_2}{QED contributions}\dotfill \pageref*{qed_contributions_2} \linebreak \noindent\hyperlink{gravity_contributions}{Gravity contributions}\dotfill \pageref*{gravity_contributions} \linebreak \noindent\hyperlink{ReferencesAxionContributions}{Axion contributions}\dotfill \pageref*{ReferencesAxionContributions} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[perturbative quantum field theory]], the [[magnetic moment]] of [[particles]] as predicted by [[classical field theory]] may receive corrections due to [[quantum physics|quantum effects]]. Such corrections are also called \emph{[[quantum anomalies]]}, and hence one speaks of the \emph{anomalous magnetic moments}, traditionally denoted by ``$g-2$''. The archetypical example is the anomalous magnetic moment of the [[electron]] in [[quantum electrodynamics]], which is famous as the [[pQFT]]-prediction that matches [[experiment]] to an accuracy of about $10^{-12}$ (e.g.\hyperlink{Scharf95}{Scharf 95, (3.10.20)}). Similarly there is the anomalous magenetic moment $g_\mu - 2$ of the [[muon]] and the other [[leptons]]. \hypertarget{Anomalies}{}\subsection*{{Anomalies}}\label{Anomalies} In fact, the anomalous magnetic moment of the [[muon]] $g_\mu - 2$ has become notorious for apparently showing a noticeable \emph{discrepancy} between [[theory (physics)|theoretic prediction]] from the [[standard model of particle physics]] and its value as determined in [[experiment]]. The discrepancy is now found to have [[statistical significance]] around 3.5[[standard deviation|σ]] (\hyperlink{DHMZ17}{DHMZ 17}) or 4[[standard deviation|σ]] (\hyperlink{Jegerlehner18a}{Jegerlehner 18a}). Recent measurements may even show a possible deviation around 2.5 [[standard deviation|σ]] for the electron's anomalous magnetic moment (see \hyperlink{Falkowski18}{Falkowski 18}). Details depend on understanding of [[non-perturbative effects]] (\hyperlink{Jegerlehner18b}{Jegerlehner 18b, section 2}). If these experimental ``anomalies'' (in the sense of [[phenomenology]]) in the anomalous magnetic moment $g_\mu - 2$ (and possibly even in $g_e -2$) are real (the established rule of thumb is that deviations are established once their [[statistical significance]] reaches 5[[standard deviation|σ]], see \href{statistical+significance#ParticlePhysics}{here}), they point to ``new physics'' beyond the [[standard model of particle physics]]. See also at \emph{[[flavour anomaly]]}. In fact \hyperlink{Lyons13b}{Lyons 13b} argued that the detection-threshold of the [[statistical significance]] of anomalies here should be just 4[[standard deviation|σ]], which would mean that they should already count as being detected: $\backslash$begin\{center\} $\backslash$end\{center\} \begin{quote}% table taken from \hyperlink{Lyons13b}{Lyons 13b, p. 4} \end{quote} Possible explanations for the anomomalies in the anomalous magnetic moments is the existence of [[leptoquarks]] (\hyperlink{BauerNeubert15}{Bauer-Neubert 15}, \hyperlink{CCDM16}{CCDM 16}, \hyperlink{Falkowski17}{Falkowski 17}, \hyperlink{Mueller18}{Müller 18}), which at the same time are a candidate for explaining the [[flavour anomalies]] (see also \hyperlink{ChiangOkada17}{Chiang-Okada 17}). \hypertarget{contributions}{}\subsection*{{Contributions}}\label{contributions} \hypertarget{qed_contributions}{}\subsubsection*{{QED contributions}}\label{qed_contributions} (\ldots{}) for the [[electron]] see e.g. \hyperlink{Scharf95}{Scharf 95, section 3.10} (\ldots{}) \hypertarget{QuantumGravityCorrection}{}\subsubsection*{{Quantum gravity contributions}}\label{QuantumGravityCorrection} The further corrections of [[loop order|1-loop]] [[perturbative quantum gravity]] to the anomalous magnetic moment of the [[electron]] and the [[muon]] have been computed in (\hyperlink{BerendsGastman75}{Berends-Gastman 75}) and found to be finite without need for [[renormalization]]. These [[Feynman diagrams]] contribute: \hypertarget{axion_contributions}{}\subsubsection*{{Axion contributions}}\label{axion_contributions} Possible contributions to and xconstraints on $g_{lep}-2$ from hypothetical [[axions]] are discussed in \hyperlink{ACGM08}{ACGM 08}, \hyperlink{MMPP16}{MMPP 16}, \hyperlink{BNT17}{BNT 17}\ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[electric dipole moment]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Basic discussion: \begin{itemize}% \item [[Othmar Steinmann]], \emph{What is the Magnetic Moment of the Electron?}, Commun.Math.Phys. 237 (2003) 181-201 (\href{https://arxiv.org/abs/hep-ph/0211187}{arXiv:hep-ph/0211187}) \item Kirill Melnikov, Arkady Vainshtein, \emph{Theory of the Muon Anomalous Magnetic Moment}, Springer Tracts in Modern Physics 216, 2006 \item [[Friedrich Jegerlehner]], \emph{The Anomalous Magnetic Moment of the Muon}, Springer Tracts in Modern Physics 226, Springer-Verlag Berlin Heidelberg, 2008 \end{itemize} Discussion of detection-threshold for the [[statistical significance]] of anomalies: \begin{itemize}% \item [[Louis Lyons]], \emph{Discovering the Significance of 5 sigma} (\href{https://arxiv.org/abs/1310.1284}{arXiv:1310.1284}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Anomalous_magnetic_dipole_moment}{Anomalous magnetic dipole moment}} \end{itemize} \hypertarget{experiment_and_deviation}{}\subsubsection*{{Experiment and deviation}}\label{experiment_and_deviation} Discussion of precision experiment and possible deviation from theory: \begin{itemize}% \item Michel Davier, Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang, \emph{Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g-2 and alpha(mZ) using newest hadronic cross-section data}, Eur. Phys. J. C (2017) 77: 827 (\href{https://arxiv.org/abs/1706.09436}{arXiv:1706.09436}) \item J. L. Holzbauer on behalf of the Muon g-2 collaboration, \emph{The Muon g-2 Experiment Overview and Status}, Proceedings for The 19th International Workshop on Neutrinos from Accelerators (NUFACT 2017) (\href{https://arxiv.org/abs/1712.05980}{arXiv:1712.05980}) \item [[Fred Jegerlehner]], \emph{The Muon g-2 in Progress}, Acta Physica Polonica 2018 (\href{https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.5506%252FAPhysPolB.49.1157&v=01073571}{doi:10.5506/APhysPolB.49.1157}, \href{https://arxiv.org/abs/1804.07409}{arXiv:1804.07409}) \item [[Fred Jegerlehner]], \emph{The Role of Mesons in Muon $g-2$} (\href{https://arxiv.org/abs/1809.07413}{arXiv:1809.07413}) \item [[Adam Falkowski]], \emph{\href{http://resonaances.blogspot.com/2018/06/alpha-and-g-minus-two.html}{Both $g-2$ anomalies}}, June 2018 \end{itemize} Possible explanation of the anomaly in the anomalous magnetic moments in terms of [[leptoquarks]]: \begin{itemize}% \item Martin Bauer, Matthias Neubert, \emph{One Leptoquark to Rule Them All: A Minimal Explanation for $R_{D^{(\ast)}}$, $R_K$ and $(g-2)_\mu$}, Phys. Rev. Lett. 116, 141802 (2016) (\href{https://arxiv.org/abs/1511.01900}{arXiv:1511.01900}) \item Estefania Coluccio Leskow, Andreas Crivellin, Giancarlo D'Ambrosio, Dario Müller, \emph{$(g-2)_\mu$, Lepton Flavour Violation and Z Decays with Leptoquarks: Correlations and Future Prospects}, Phys. Rev. D 95, 055018 (2017) (\href{https://arxiv.org/abs/1612.06858}{arXiv:1612.06858}) \item \{BiswasShaw19\} Anirban Biswas, Avirup Shaw, \emph{Reconciling dark matter, $R_{K^{(\ast)}}$ anomalies and $(g-2)_\mu$ in an $L_\mu-L_\tau$ scenario} (\href{https://arxiv.org/abs/1903.08745}{arXiv:1903.08745}) \item [[Adam Falkowski]], \emph{\href{http://resonaances.blogspot.com/2015/11/leptoquarks-strike-back.html}{Leptoquarks strike back}}, November 2017 \item Cheng-Wei Chiang, Hiroshi Okada, \emph{A simple model for explaining muon-related anomalies and dark matter} (\href{https://arxiv.org/abs/1711.07365}{arXiv:1711.07365}) \item Dario Müller, \emph{Leptoquarks in Flavour Physics}, EPJ Web of Conferences 179, 01015 (2018) (\href{https://arxiv.org/abs/1801.03380}{arXiv:1801.03380}) \item Junichiro Kawamura, Stuart Raby, Andreas Trautner, \emph{Complete Vector-like Fourth Family and new $U(1)'$ for Muon Anomalies} (\href{https://arxiv.org/abs/1906.11297}{arXiv:1906.11297}) \end{itemize} \hypertarget{qed_contributions_2}{}\subsubsection*{{QED contributions}}\label{qed_contributions_2} The computation of the anomalous magnetic dipole moment of the [[electron]] in [[QED]] is spelled out (via [[causal perturbation theory]]) in \begin{itemize}% \item [[Günter Scharf]], section 3.10, culminating in (3.10.20), of \emph{[[Finite Quantum Electrodynamics -- The Causal Approach]]}, Berlin: Springer-Verlag, 1995, 2nd edition \end{itemize} \hypertarget{gravity_contributions}{}\subsubsection*{{Gravity contributions}}\label{gravity_contributions} Corrections at [[loop order|1-loop]] from [[quantum gravity]] are discussed in \begin{itemize}% \item F. A. Berends, R. Gastmans, \emph{Quantum gravity and the electron and muon anomalous magnetic moment}, Phys. Lett. B55 Issue 3 Feb 1975 311-312 () \end{itemize} This discussion is adapted to [[supergravity]] in \begin{itemize}% \item F. del Aguila, A. Culatti, R. Munoz-Tapia, M. Perez-Victoria, \emph{Supergravity corrections to $(g-2)_l$ in differential renormalization}, Nuclear Physics B 504 (1997) 532-550 (\href{https://arxiv.org/abs/hep-ph/9702342}{arXiv:hep-ph/9702342}) \end{itemize} \hypertarget{ReferencesAxionContributions}{}\subsubsection*{{Axion contributions}}\label{ReferencesAxionContributions} Contribution of hypothetical [[axions]] to the [[anomalous magnetic moment]] of the [[electron]] and [[muon]] in [[QED]]: \begin{itemize}% \item Yannis Semertzidis, \emph{Magnetic and Electric Dipole Moments in Storage Rings}, chapter 6 of Markus Kuster, Georg Raffelt, Berta Beltrán (eds.), \emph{Axions: Theory, cosmology, and Experimental Searches}, Lect. Notes Phys. 741 (Springer, Berlin Heidelberg 2008) () \item Roberta Armillis, Claudio Coriano, Marco Guzzi, Simone Morelli, \emph{Axions and Anomaly-Mediated Interactions: The Green-Schwarz and Wess-Zumino Vertices at Higher Orders and g-2 of the muon}, JHEP 0810:034,2008 (\href{https://arxiv.org/abs/0808.1882}{arXiv:0808.1882}) \item W.J. Marciano, A. Masiero, P. Paradisi, M. Passera, \emph{Contributions of axion-like particles to lepton dipole moments}, Phys. Rev. D 94, 115033 (2016) (\href{https://arxiv.org/abs/1607.01022}{arXiv:1607.01022}) \item Martin Bauer, Matthias Neubert, Andrea Thamm, \emph{Collider Probes of Axion-Like Particles}, J. High Energ. Phys. (2017) 2017: 44. (\href{https://arxiv.org/abs/1708.00443}{arXiv:1708.00443}, ) \end{itemize} The basic relevant [[Feynman diagrams]] are worked out here: \begin{itemize}% \item \href{http://www-personal.umich.edu/~jbourj/peskin/6-3.pdf}{pdf} \end{itemize} [[!redirects anomalous magnetic moments]] [[!redirects anomalous magnetic dipole moment]] [[!redirects anomalous magnetic dipole moments]] [[!redirects electron anomalous magnetic moment]] [[!redirects muon anomalous magnetic moment]] [[!redirects anomalous magnetic moment of the electron]] [[!redirects anomalous magnetic dipole moment of the electron]] [[!redirects g-2]] \end{document}