\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{apartness space} \hypertarget{apartness_spaces}{}\section*{{Apartness spaces}}\label{apartness_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{pointset_apartness_spaces}{Point--set apartness spaces}\dotfill \pageref*{pointset_apartness_spaces} \linebreak \noindent\hyperlink{separation_properties}{Separation properties}\dotfill \pageref*{separation_properties} \linebreak \noindent\hyperlink{relation_to_topological_spaces}{Relation to topological spaces}\dotfill \pageref*{relation_to_topological_spaces} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{apartness space} is a set equipped with an ``apartness relation'' that distinguishes between pairs of points or sets. They are particularly interesting in [[constructive mathematics]]; in [[classical mathematics]] they tend to be equivalent to better-known definitions expressed in terms of ``closeness'' rather than ``apartness''. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} There are actually several different notions of ``apartness space'' depending on whether the objects being compared on each side are points or sets. \begin{itemize}% \item A \emph{point--point apartness space} is a set $X$ equipped with an \emph{[[apartness relation]]}, usually written $x # y$ on elements $x,y\in X$. Sometimes it is required to be [[tight relation|tight]], or to be only an [[inequality relation]]. \item A \textbf{point--set apartness space} is a set $X$ equipped with a relation $x \bowtie A$ between points $x\in X$ and subsets $A\subseteq X$, satisfying appropriate axioms. In [[classical mathematics]], these axioms are obtained by [[contrapositive|contraposition]] from the definition of a [[topological space]] in terms of a [[exact functor|right exact]] [[Moore closure]] operator, so that point--set apartness spaces are equivalent to topological spaces. In [[constructive mathematics]] \ldots{} well, keep reading. \item A \emph{set--set apartness space} is a set $X$ equipped with a relation $A\bowtie B$ between [[subsets]] $A,B\subseteq X$, satisfying appropriate axioms. A set--set apartness space is one of the ways to describe the [[classical mathematics|classical]] notion of a \emph{[[proximity space]]}. In [[constructive mathematics]], the definition of a proximity space in terms of $\bowtie$ can be taken as a definition of a set--set apartness space. \item A \emph{uniform apartness space} is a set $X$ equipped with a collection of ``co-[[entourages]]'', each giving a different notion of when two points are apart, satisfying appropriate axioms. In [[classical mathematics]], the co-entourages are exactly the [[complements]] of the entourages of a [[uniform space]], and the same is true constructively if the space is [[uniformly regular]]. \end{itemize} Since point--point apartness spaces are described at [[apartness relation]], set--set apartness spaces at [[proximity space]], and uniform apartness spaces at [[uniformly regular space]], the rest of this page will be about point--set apartness spaces. \hypertarget{pointset_apartness_spaces}{}\subsection*{{Point--set apartness spaces}}\label{pointset_apartness_spaces} \begin{udefn} An \textbf{apartness space} is a set $X$ equipped with a relation $\bowtie$ between points $x\in X$ and subsets $A\subseteq X$ such that \begin{enumerate}% \item $x\bowtie \emptyset$ for any $x$. \item if $x\bowtie A$, then $x\neq y$ for all $y\in A$. \item $x\bowtie (A\cup B)$ iff $x\bowtie A$ and $x\bowtie B$. \item If $x\bowtie A$, then $x \bowtie \{ y \mid \forall z, (z\bowtie A \to z\neq y) \}$. \end{enumerate} \end{udefn} The relation $x\bowtie A$ should be regarded as a ``positive'' way of saying that $x$ does not belong to the [[closure]] of $A$, i.e. $x\notin \overline{A}$. Under this interpretation, the above axioms contrapose to become \begin{enumerate}% \item $\overline{\emptyset} = \emptyset$. \item If $x\in A$, then $x\in \overline{A}$, i.e. $A\subseteq \overline{A}$. \item $\overline{A} \cup \overline{B} = \overline{A\cup B}$ (and in particular $(A\subseteq B) \to (\overline{A}\subseteq \overline{B})$). \item If $B\subseteq \overline{A}$ and $x\in \overline{B}$, then $x\in\overline{A}$, i.e. $\overline{\overline{A}} = \overline{A}$. \end{enumerate} which are precisely the axioms of a [[topology]] expressed in terms of a closure operator. In constructive mathematics, of course, the law of contraposition does not hold. The axiom $x\bowtie \emptyset$ is almost unnecessary, since the last axiom ensures that if $x\bowtie A$ for any set $A$ then $x\bowtie\emptyset$. In particular, this is the case if $X$ is $T_1$ (see below) and for any $x\in X$ there is a $y\in X$ with $x\neq y$. The above definition is almost exactly that of a ``pre-apartness'' from \hyperlink{BV11}{BV11}. The differences are (1) they require $X$ to be [[inhabited set|inhabited]] (which category-theoretically is wrong-headed, since it excludes the [[initial object]]), and (2) they assume that $X$ is given with an ambient [[inequality relation]] that is referred to by the symbol $\neq$ in axioms 2 and 4. (If $\neq$ is the [[denial inequality]], then these axioms can be written more simply as ``if $x\bowtie A$ then $x\notin A$'' and ``if $x\bowtie A$ then $x\bowtie \{ y \mid \neg(y\bowtie A) \}$''.) Note that if the space is $T_1$ (see below) then this ambient inequality is definable in terms of $\bowtie$ as $x\bowtie \{y\}$. For an ``apartness'', \hyperlink{BV11}{BV11} also require comparability (see below). Axiom 4 is phrased in \hyperlink{BV11}{BV11} as ``if $\forall x, (x\bowtie A \Rightarrow (\forall y\in B, x\neq y))$, then $\forall x, (x\bowtie A \Rightarrow x\bowtie B)$. This is equivalent to our version, since $B = \{ y \mid \forall z, (z\bowtie A \to z\neq y) \}$ is the largest set $B$ satisfying $\forall x, (x\bowtie A \Rightarrow (\forall y\in B, x\neq y))$. The earlier paper \hyperlink{BSV02}{BSV02} omits the axiom $x\bowtie \emptyset$, and phrases axiom 2 with the denial inequality but axiom 4 with an ambient inequality --- although these are probably oversights --- and requires $T_1$ as part of the definition too (see below). An earlier, more predicative presentation of ``apartness spaces'' can be found in \hyperlink{FW96}{Waaldijk}. \hypertarget{separation_properties}{}\subsection*{{Separation properties}}\label{separation_properties} Any apartness space comes with an [[irreflexive relation]] $\nleq$ defined by $x \nleq y$ iff $x \bowtie \{y\}$. This is a positive version of the negation of the [[specialization order]]. A topological space is called $T_1$ (see [[separation axioms]]) if its specialization order is discrete, i.e. $(x\le y) \to (x=y)$; thus an apartness space is called \textbf{$T_1$} if $\neg(x\nleq y) \to (x=y)$. We could contrapose this to obtain $\neg(x=y) \to (x\nleq y)$, but it is usually too strong constructively to have a denial statement imply a positive one. However, if we replace $\neg(x=y)$ with a given [[apartness relation]] or [[inequality relation]] other than the [[denial inequality]], then we obtain an axiom $(x\neq y) \to (x\nleq y)$ that is a purely positive version of $T_1$. Note that if $\neq$ is [[tight relation|tight]], then this statement implies the negative version of $T_1$, while conversely if $\nleq$ is symmetric (see below) then the negative version of $T_1$ says precisely that $\nleq$ is tight. Note that axiom 2 implies the converse $(x\bowtie \{y\}) \to (x\neq y)$, so that if the axioms and the $T_1$ property are stated with reference to some ambient inequality $\neq$, then $\neq$ can be defined in terms of $\bowtie$. If we \emph{define} $\neq$ in this way, then axiom 2 should be stated in terms of the denial inequality (thereby asserting that this relation $x\bowtie \{y\}$ is [[irreflexive]]). If one wants the relation $x\bowtie \{y\}$ to be [[symmetric relation|symmetric]] and thus an ``[[inequality relation]]'' one needs to assert this separately. An apartness space with this property is naturally called \textbf{$R_0$}, or perhaps \textbf{strongly $R_0$}, since it implies (and classically is equivalent to) the topological property called $R_0$ that the specialization order is symmetric (see [[separation axioms]]). However, stating axiom 4 in terms of the $\bowtie$-derived inequality is weaker, even in [[classical mathematics]], than stating it in terms of the denial inequality. For instance, if $X = \{x,y,z\}$ with the only nonempty apartness relations $x\bowtie \{z\}$ and $z\bowtie \{x\}$, then axiom 4 for the denial inequality fails for $A=\{z\}$, since $\{ y \mid \neg(y\bowtie A)\} = \{y,z\}$ which is not apart from $x$; but stated in terms of the $\bowtie$-derived inequality it holds, since $\{ v \mid \forall u, (u\bowtie A \Rightarrow u \bowtie \{v\})\} = \{z\}$. This is a [[pretopological space]] that is not a topological space; thus only axiom 4 with the denial inequality (or at least a [[tight inequality]], which classically becomes equivalent to denial) gives a notion of point-set apartness space that reduces classically to ordinary toplogical spaces. In \hyperlink{BV11}{BV11}, axiom 4 for the denial inequality is called the \textbf{reverse Kolmogorov property}. An apartness space may be called \textbf{comparable} (nonce definition on this page) if $x\bowtie A$ implies $(x\neq y) \vee (y\bowtie A)$ for any $y$, where $\neq$ might also be a given apartness on $X$. This condition is classically trivial, and generalizes the [[comparison]] axiom on a point--point [[apartness relation]]. In particular, if $\neq$ denotes the relation $\nleq$ defined above, then this property implies that $\nleq$ is a [[comparison]], and hence (if the space is also $R_0$, so it is symmetric) an [[apartness relation]]. It is also related topologically to Penon's definition of intrinsic [[open subset]] in [[synthetic topology]] and to the natural topology on a [[point-point apartness space]], and can be viewed as a very weak version of [[regular space|regularity]]. An apartness space is \textbf{[[locally decomposable space|locally decomposable]]} if whenever $x\bowtie A$, there exists a set $B$ such that $x\bowtie B$ and every $y$ satisfies either $y\bowtie A$ or $y\in B$. This condition is also classically trivial: take $B = \{ y \mid \neg(y\bowtie A) \}$. It implies comparability (for $\neq$ the [[denial inequality]]). \hypertarget{relation_to_topological_spaces}{}\subsection*{{Relation to topological spaces}}\label{relation_to_topological_spaces} If $X$ is a topological space, we define $x\bowtie A$ if there is a neighborhood of $x$ disjoint from $A$, or equivalently if the complement of $A$ is a neighborhood of $x$. This makes $X$ an apartness space. Only the last axiom is somewhat nontrivial: if $x\in U$ with $U$ open and $U\cap A = \emptyset$, and $\forall y, (y\bowtie A \to y\notin B)$, then since $(y\in U) \Rightarrow (y\bowtie A)$ we have $U\cap B = \emptyset$ too, so $x\bowtie B$. Conversely, if $X$ is an apartness space, define $U\subseteq X$ to be a neighborhood of $x\in U$ if there is a set $A$ such that $x\bowtie A$ and $\forall y, (y\bowtie A \Rightarrow y\in U)$. This makes $X$ a topological space. Again the nontrivial part is the ``transitivity'' of neighborhoods, i.e. that if $U$ is a neighborhood of $x$ then so is $\{ y \mid U$ is a neighborhood of $y \}$. To see this, if $x\bowtie A$ and $\forall y, (y\bowtie A \Rightarrow y\in U)$, then $U$ is a neighborhood of any point $y$ with $y\bowtie A$, so it suffices to show that $\{ y \mid y\bowtie A\}$ is a neighborhood of $x$; but this is obvious. If we order the topologies on $X$ by $\tau_1 \le \tau_2$ if $\tau_2 \subseteq \tau_1$ (i.e. $\tau_1$ is finer than $\tau_2$), and the apartnesses by $\bowtie_1 \le \bowtie_2$ if $(x\bowtie_2 A) \Rightarrow (x\bowtie_1 A)$, then these constructions define [[monotone functions]] $\tau \mapsto \bowtie_\tau$ and $\bowtie \mapsto \tau_\bowtie$ respectively. Moreover, we have: \begin{utheorem} The above functions exhibit the poset of apartnesses on $X$ as a [[reflective subcategory|reflective]] sub-poset of the poset of topologies on $X$: we have $\tau \le \tau_{\bowtie_\tau}$ and $\bowtie_{\tau_\bowtie} = \bowtie$. \end{utheorem} \begin{proof} For the former inequality, if $U$ is open in $\tau_{\bowtie_\tau}$, then for every $x\in U$ there is a set $A$ such that $x\bowtie_\tau A$ and $\forall y, (y\bowtie_\tau A \Rightarrow y\in U)$. Since $x\bowtie_\tau A$, there is an open set $V$ with $x\in V$ and $V\cap A = \emptyset$. But then every $y\in V$ satisfies $y\bowtie_\tau A$, hence $y\in U$; so $V\subseteq U$. Thus $U$ is open. For the latter equation, if $x\bowtie A$, then to show $x \bowtie_{\tau_\bowtie} A$ we must construct an open set $U\in \tau_\bowtie$ with $x\in U$ and $U\cap A = \emptyset$; but it suffices to take $U = \{ y \mid y\bowtie A \}$. Conversely, if $x \bowtie_{\tau_\bowtie} A$, then there is an open set $U\in \tau_\bowtie$ with $x\in U$ and $U\cap A = \emptyset$. By definition, $U\in \tau_\bowtie$ and $x\in U$ mean there is a set $B$ with $x\bowtie B$ and $\forall y, (y\bowtie B \Rightarrow y\in U)$. And by the last axiom of an apartness space, to show $x\bowtie A$ it suffices to show $\forall y, (y\bowtie B \to y\notin A)$; but this follows since $y\bowtie B \Rightarrow y\in U$ and $U\cap A = \emptyset$. \end{proof} In other words, an apartness space can be regarded as a well-behaved kind of topological space: one in which for every open neighborhood $U$ of a point $x$ there is a set $A$ and an open neighborhood $V$ of $x$ such that $V\cap A = \emptyset$ and $U$ contains the interior of the complement of $A$. Note that $V$ is then in the interior of the complement of $A$, and if $x$ is in the interior of the complement of $A$ then the latter is such a $V$. Thus, the condition can equivalently be phrased as: for every open neighborhood $U$ of $x$, there is a set $A$ such that $x \in int(\neg A) \subseteq U$. In other words, the interiors of complements form a base for the topology. In \hyperlink{BSV}{Bridges et. al.} this condition is called being \textbf{topologically consistent}. A sufficient condition for topological consistency is local decomposability. This was defined above for apartness spaces; more generally, a topological space is said to be [[locally decomposable space|locally decomposable]] if for every open neighborhood $U$ of $x$ there is an open neighborhood $V$ of $x$ such that $U \cup \neg V = X$, i.e. every $y\in X$ satisfies $(y\in U)\vee (y\notin V)$. This implies that $x\in int(\neg\neg V) \subseteq \neg\neg V \subseteq U$, giving topological consistency. (Of course, in classical mathematics every space is locally decomposable.) In contrast to the above theorem, it is not quite justified to say that the \emph{category} of apartness spaces is a subcategory of the category of topological ones. It is most natural to say that a function $f:X\to Y$ between apartness spaces is \textbf{continuous} if for all $x\in X$ and $A\subseteq X$, if $f(x) \bowtie f(A)$ then $x\bowtie A$. It is true that if $X$ and $Y$ are topological spaces and $f$ is topologically continuous, then it is apartness-continuous in this sense for the induced apartnesses. For if $f(x)\bowtie f(A)$, then $f(x) \in U$ for some open set $U$ disjoint from $f(A)$; topological continuity of $f$ then gives that $f^{-1}(U)$ is an open set containing $x$ and disjoint from $A$, so that $x\bowtie A$. Thus we do have a functor $Top \to Apart$. However, a continuous map between apartness spaces in the above sense apparently need not be continuous for the induced topologies; but this is true if $Y$ is locally decomposable. For if $U\subseteq Y$ is open and $x\in f^{-1}(U)$, we have a set $A\subseteq Y$ such that $f(x)\bowtie A$ and $y\bowtie A$ implies $y\in U$, and by local decomposability gives a $B\subseteq Y$ such that $f(x)\bowtie B$ and every $y$ satisfies either $y\bowtie A$ or $y\in B$. Let $C = f^{-1}(B)$; if $x'\bowtie C$, we have $x'\notin C$ and hence $f(x')\notin B$, so $f(x')\bowtie A$ and thus $f(x')\in U$ and $x'\in f^{-1}(U)$. Moreover, since $f(x)\bowtie B$ we have $x\bowtie C$ by apartness-continuity. Thus, $f^{-1}(U)$ is open. Thus, the category of locally decomposable apartness spaces is equivalent to the category of locally decomposable topological spaces. \hypertarget{references}{}\subsection*{{References}}\label{references} Notions of ``apartness space'' based on a presentation in terms of basic opens, somewhat akin to [[formal topology]], were developed in: \begin{itemize}% \item [[Frank Waaldijk]], \emph{Modern intuitionistic topology}, Ph.D. thesis, 1996, \href{http://www.fwaaldijk.nl/modern%20intuitionistic%20topology.pdf}{link} \end{itemize} \begin{itemize}% \item [[Frank Waaldijk]], \emph{Natural topology}, 2011, 2012, \href{https://arxiv.org/abs/1210.6288}{arxiv} \end{itemize} The above definition in terms of an apartness relation between points and subsets is slightly adapted from the version given in: \begin{itemize}% \item [[Douglas Bridges]], Peter Schuster, and Luminita Vita, \emph{Apartness, Topology, and Uniformity: a Constructive View}, 2002, \href{http://dx.doi.org/10.1002/1521-3870%28200210%2948:1%2B%3C16::AID-MALQ16%3E3.0.CO;2-7}{doi} \end{itemize} \begin{itemize}% \item [[Douglas Bridges]] and Luminita Vita, \emph{Apartness and Uniformity: A Constructive Development}. 2011, \href{http://link.springer.com/book/10.1007%2F978-3-642-22415-7}{link} \end{itemize} [[!redirects apartness space]] [[!redirects apartness spaces]] [[!redirects point-set apartness space]] [[!redirects point-set apartness spaces]] [[!redirects point–set apartness space]] [[!redirects point–set apartness spaces]] [[!redirects point--set apartness space]] [[!redirects point--set apartness spaces]] [[!redirects point-set apartness structure]] [[!redirects point-set apartness structures]] [[!redirects point–set apartness structure]] [[!redirects point–set apartness structures]] [[!redirects point--set apartness structure]] [[!redirects point--set apartness structures]] [[!redirects point-set apartness relation]] [[!redirects point-set apartness relations]] [[!redirects point–set apartness relation]] [[!redirects point–set apartness relations]] [[!redirects point--set apartness relation]] [[!redirects point--set apartness relations]] \end{document}