\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{arc space} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} While for finite $m$, $m$-jets of a scheme of finite type (over an algebraically closed field of characteristic $0$) are represented by a scheme, the $m$-[[jet scheme]], the (inverse) limit of $m$-jet schemes is not of finite type; this is the arc space. \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} The arc space (and the jet schemes) of a variety $X$ gives information about the singular locus $X_{sing}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $k$ be the algebraically closed field, $Sch/k$ the category of schemes over $k$ and $X$ an object in $Sch/k$. The presheaf \begin{displaymath} (Sch/k)^{op}\to Set\,\,\,\,\,\,\,\,\,\, Y\mapsto (Sch/k) (Y\times_k k[t]/t^{m+1},X) \end{displaymath} is representable by a $k$-scheme of finite type $X_m$ the $m$-jet scheme. For $s\geq 1$, the canonical maps $k[t]/t^{m+1}\to k[t]^{m+s+1}$ induces maps $(Sch/k) (Y\times_k k[t]/t^{m+s+1},X)\to (Sch/k)(Y\times_k k[t]/t^{m+1},X)$, what is $(Sch/k) (Y,X_{m+1})\to (Sch/k) (Y, X_m)$ hence also on representing objects $X_{m+1}\to X_m$. The limit is the \textbf{arc space} $X_\infty = lim_m X_m$ of $X$ and it comes along with natural projections $X_\infty\to X_m\to X$ (under some assumptions each of the maps is locally trivial). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} If $X$ is a scheme of finite type over $k$ then there is a bijection \begin{displaymath} (Sch/k) (Y,X_m) \cong (ind-Sch/k) (Y\hat\times_{Spec k} Spec k[[t]],X) \end{displaymath} natural in $Y$ in $Sch/k$, where $Y\hat\times_k k[[t]]$ is the formal completion of $Y$ along subscheme $Y\times_{Spec k} \{0\}$.1 \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} Related $n$Lab entries include [[singularity]], [[loop space]], [[jet space]], [[motivic integration]] Early ideas appeared in \begin{itemize}% \item J. Nash Jr., \emph{Arc structure of singularities}, Duke Math. J., 81 (1995), 31--38. \end{itemize} and its appearance in motivic integration stems from \begin{itemize}% \item [[M. Kontsevich]], lecture on motivic integration, Orsay, December 7, 1995. \end{itemize} For basic lectures see \begin{itemize}% \item M. Musta, \emph{Spaces of arcs in birational geometry}, \href{http://www.math.lsa.umich.edu/~mmustata/lectures_arcs.pdf}{pdf} \item M. Popa, 571 Ch. 5. \emph{Jet schemes and arc spaces}, \href{http://homepages.math.uic.edu/~mpopa/571/chapter5.pdf}{pdf} \end{itemize} \hypertarget{for_surveys_see}{}\subsection*{{For surveys, see}}\label{for_surveys_see} \begin{itemize}% \item Jan Denef, Francois Loeser, \emph{Geometry on arc spaces of algebraic varieties}, Proceedings of 3rd ECM, Barcelona, July 10-14, 2000, \href{http://arxiv.org/abs/math/0006050}{math.AG/0006050} \item L. Ein, M. Musta, \emph{Jet schemes and singularities}, Algebraic geometry- Seattle 2005, 505--546, Proc. Sympos. Pure Math. 80, Part 2, Amer. Math. Soc., Providence, RI, 2009 \href{http://www.ams.org/mathscinet-getitem?mr=2483946}{MR2483946} \end{itemize} There are connections to combinatorics and representation theory, see \begin{itemize}% \item Clemens Bruschek, Hussein Mourtada, Jan Schepers, \emph{Arc spaces and the Rogers--Ramanujan identities}, The Ramanujan Journal 30:1 (2013) 9-38 \end{itemize} A survey \begin{itemize}% \item Tommaso de Fernex, \emph{The space of arcs of an algebraic variety}, \href{http://arxiv.org/abs/1604.02728}{arxiv/1604.02728} \end{itemize} Other papers \begin{itemize}% \item J. Denef, F. Loeser, \emph{Germs of arcs on singular algebraic varieties and motivic integration}, Invent. Math. 135 (1999), 201--232. \item S Ishii, J Koll\'a{}r, \emph{The Nash problem on arc families of singularities,} Duke Math. J., 120 (2003) 601--620 \href{http://arxiv.org/abs/math/0207171}{math.AG/0207171} \item Shihoko Ishii, \emph{The arc space of a toric variety}, \href{http://dx.doi.org/10.1016/j.jalgebra.2003.12.015}{doi} \href{http://arxiv.org/abs/math/0312324}{arxiv/0312324} \item L Ein, R Lazarsfeld, M Musta, \emph{Contact loci in arc spaces}, Comput. Math. and \href{http://arxiv.org/abs/math/0303268}{math.AG/0303268} \item M Musta, \emph{Jet schemes of locally complete intersection canonical singularities}, with an appendix by David Eisenbud and Edward Frenkel, Invent. Math., 145 (2001) 397--424; \emph{Singularities of pairs via jet schemes}, J. Amer. Math. Soc., 15 (2002) 599--615 \item Cobo Pablos, H. and Gonz\'a{}lez P\'e{}rez, Pedro Daniel (2012) Motivic Poincar\'e{} series, toric singularities and logarithmic Jacobian ideals. Journal of algebraic geometry, 21 (3). pp. 495-529 \href{http://www.ams.org/journals/jag/2012-21-03/S1056-3911-2011-00567-5/S1056-3911-2011-00567-5.pdf}{pdf} \item Dave Anderson, Alan Stapledon, \emph{Arc spaces and equivariant cohomology}, Transformation Groups 18:4 (2013) 931-969 \item J. Nicaise, \emph{Arcs and resolution of singularities}, Manuscr. Math. 116: pp. 297-322 (2005) \item W. Veys, \emph{Arc spaces, motivic integration and stringy invariants}, in Singularity theory and its applications, Adv. Stud. Pure Math. 43, Math. Soc. Japan, Tokyo (2006) 529-572 \end{itemize} See also Corollary 4.4 in \begin{itemize}% \item Bhargav Bhatt, \emph{Algebraization and Tannaka duality}, \href{http://arxiv.org/abs/1404.7483}{arXiv/1404.7483} \end{itemize} \end{document}