\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{arithmetic topology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{knot_theory}{}\paragraph*{{Knot theory}}\label{knot_theory} [[!include knot theory - contents]] \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\subsection*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_dictionary}{The dictionary}\dotfill \pageref*{the_dictionary} \linebreak \noindent\hyperlink{VersionOfM^2KR}{Version of Mazur-Morishita-Kapranov-Reznikov (M{\tt \symbol{94}}2KR)}\dotfill \pageref*{VersionOfM^2KR} \linebreak \noindent\hyperlink{disanalogies}{Disanalogies}\dotfill \pageref*{disanalogies} \linebreak \noindent\hyperlink{version_of_deninger}{Version of Deninger}\dotfill \pageref*{version_of_deninger} \linebreak \noindent\hyperlink{ReznikovVariant}{Version of Reznikov}\dotfill \pageref*{ReznikovVariant} \linebreak \noindent\hyperlink{explanations_for_the_analogy}{Explanations for the analogy}\dotfill \pageref*{explanations_for_the_analogy} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Arithmetic topology} is a theory describing some surprising [[analogies]] between [[low-dimensional topology|3-dimensional topology]] and [[number theory]] ([[arithmetic]]), where [[knots]] embedded in a [[3-manifold]] behave like [[prime ideals]] in a [[ring of algebraic integers]]. See also at \emph{\href{Spec%28Z%29#As3dSpaceContainingKnots}{Spec(Z) -- As a 3d space containing knots}}. Under this analogy, the [[3-sphere]], $S^3$ corresponds to the ring of [[rational numbers]] $\mathbb{Q}$, or rather (the closure of) $spec(\mathcal{O}_{\mathbb{Q}})$ (i.e., $spec(\mathbb{Z})$), since the 3-sphere has no non-trivial ([[branched cover|unbranched]]) covers while $\mathbb{Q}$ has no non-trivial [[unramified extensions]]. The [[linking number]] between two embedded knots in the 3-sphere then corresponds to the [[Legendre symbol]] between two primes in the ordinary integers. The so-called \emph{M{\tt \symbol{94}}2KR dictionary} (Mazur-Morishita-Kapranov-Reznikov) relates terms from each side of the analogy (see sec 2.2 of \hyperlink{Sikora}{Sikora}). \hypertarget{the_dictionary}{}\subsection*{{The dictionary}}\label{the_dictionary} \hypertarget{VersionOfM^2KR}{}\subsubsection*{{Version of Mazur-Morishita-Kapranov-Reznikov (M{\tt \symbol{94}}2KR)}}\label{VersionOfM^2KR} \begin{enumerate}% \item [[closed manifold|Closed]], [[orientation|orientable]], [[connected topological space|connected]] [[3-manifolds]] correspond to (the closure of) schemes $Spec \mathcal{O}_K$ for number fields $K$. \item Links correspond to ideals in $\mathcal{O}_K$ and knots correspond to prime ideals (tame in both cases). Knots can be represented by immersions of $S^1$ into $M$, and prime ideals in $\mathcal{O}_K$ can be identified with closed immersions $Spec \mathbb{F} \to Spec \mathcal{O}_K$, where $\mathbb{F}$`s are finite fields. Each link decomposes uniquely as a union of knots and each ideal decomposes uniquely as a product of primes. \item An algebraic integer corresponds to an embedded surface (possibly with boundary), and the operation $a \to (a)$ corresponds to taking its boundary. Closed embedded surfaces correspond to units in $\mathcal{O}_K$. Ideals of the form $(a)$ represent the identity in $Cl(K)$, and the links of the form $\partial S$ represent the identity in $H_1(M,\mathbb{Z})$. \item $Cl(K)$ corresponds to the torsion component of first integral homology. The free component of $H_1(M,\mathbb{Z})$ corresponds to the group of units in $\mathcal{O}_K$ after removing the torsion (roots of unity). \item Finite extensions of number fields correspond to finite branched coverings. \item $S^3$ is supposed to correspond to $\mathbb{Q}$. Notice that $S^3$ has no nontrivial unbranched covers, and similarly $\mathbb{Q}$ has no nontrivial unramified extensions. \item A Galois extension $L/K$ with Galois group $G$ induces a morphism $Spec \mathcal{O}_L \to (Spec \mathcal{O}_L)/G = Spec \mathcal{O}_K$. Such maps correspond to the quotient maps $M \to M/G$ induced by orientation preserving actions of finite groups $G$ on 3-manifolds $M$. One can show that $M/G$ is always a 3-manifold and that the maps $M \to M/G$ are branched coverings. \item Let $q = p^n$. Consider the cyclotomic extension $\mathbb{Q}(\zeta_q)$. It is ramified only at $p$. These correspond to cyclic branched covers of knots in $S^3$. The union of these as $q$ ranges over all powers of $p$ should correspond to the universal abelian cover of $S^3 \setminus K$. There is a natural action of $\mathbb{Z}$ on the first homology group of the infinite cyclic cover of the knot complement corresponding to the natural action of the $p$-adic integers on the $p$-torsion of $Cl(\mathbb{Q}(\zeta_{p^{\infty}}))$. This concerns the [[Alexander polynomial]] of the knot and [[Iwasawa theory]]. (\hyperlink{Sikora}{Sikora, pp. 5-6}, \hyperlink{Koberda08}{Koberda08, pp. 32-33}) \end{enumerate} Note: Regarding (4), some have argued that $Cl(K)$ should correspond to the full first integral homology group, (see, e.g., \hyperlink{Goundaroulis}{Goundaroulis \& Kontogeorgis}). The correspondence between $\pi^{et}_1(\mathbb{Z} -\{p\})$ and $\pi_1(S^3 \setminus K)$ can be developed to relate the Legendre symbol for two primes to the linking number of two knots, and further to the R\'e{}dei symbol for three primes and Milner's triple linking number. Thus we can find a `Borromean link' of primes, such as $(13, 61, 397)$, where each pair is unlinked. \hypertarget{disanalogies}{}\paragraph*{{Disanalogies}}\label{disanalogies} \begin{enumerate}% \item The algebraic translation of the Poincar\'e{} Conjecture is false. $\mathbb{Q}$ is not the only number field with no unramified extensions. Nevertheless, $\hat{H}^i(Spec \mathcal{O}_K, \mathbb{Z}/n\mathbb{Z}) = \hat{H}^i(Spec \mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) (i \in \mathbb{Z}, n \geq 2)$ if and only if $\mathcal{O}_K = \mathbb{Z}$. \item Let $M_1 \to M$ be a covering of 3-manifolds. A knot $K$ in $M$ does not necessarily lift to a knot in $M_1$, while every prime ideal $p \triangleleft \mathcal{O}_K$ gives rise to an ideal $p \mathcal{O}_L$, where $L/K$ is a Galois number field extension. (\hyperlink{Goundaroulis}{Goundaroulis \& Kontogeorgis}). \end{enumerate} \hypertarget{version_of_deninger}{}\subsubsection*{{Version of Deninger}}\label{version_of_deninger} Similar to M{\tt \symbol{94}}2KR, but with the introduction of a 2-dimensional foliation on the 3-manifold and a flow such that finite primes $p$ correspond to periodic orbits of length $log N p$ and the infinite primes correspond to the fixed points of the flow (\hyperlink{Deninger02}{Deninger02}). (See also the work of \href{http://www.math.uni-muenster.de/reine/u/baptiste.morin/}{Baptiste Morin} on the Weil-\'e{}tale topos.) \hypertarget{ReznikovVariant}{}\subsubsection*{{Version of Reznikov}}\label{ReznikovVariant} Reznikov has modified the dictionary (\hyperlink{Reznikov00}{Reznikov 00, section 12}) so as to associate a number field with what he calls a $3\frac{1}{2}$-manifold, that is a closed three-manifold $M$, bounding a four-manifold $N$, such that the map of fundamental groups $\pi_1(M) \to \pi_1(N)$ is surjective. \hypertarget{explanations_for_the_analogy}{}\subsection*{{Explanations for the analogy}}\label{explanations_for_the_analogy} [[Barry Mazur]] observed that for an affine spectrum $X = Spec(D)$ of the ring of integers $D$ in a number field, the groups $H^n_{et}(X, \mathbb{G}_{m, X})$ vanish (up to 2-torsion) for $n \gt 3$, and is equal to $\mathbb{Q}/\mathbb{Z}$ for $n = 3$, where $\mathbb{G}_{m, X}$ is the \'e{}tale sheaf on $X$ defined by associating to a connected finite \'e{}tale covering $Spec(B) \to X$ the multiplicative group $\mathbb{G}_{m, X}(Y) = B^{\times}$. Also, there is a non-degenerate pairing for any constructible abelian sheaf $M$, \begin{displaymath} H^r_{et}(X,M^{'}) \times Ext^{3-r}_X(M,\mathbb{G}_{m, X}) \to H^3_{et}(X,\mathbb{G}_{m, X})\simeq \mathbb{Q}/\mathbb{Z}, \end{displaymath} where $M^{'} = Hom(M, \mathbb{G}_{m, X})$. This resembles Poincar\'e{} duality for 3-manifolds. [[Minhyong Kim]] argues that the normal bundle of an embedding of a circle corresponding to a prime in $Spec(\mathbb{Z})$ is 2-dimensional (\hyperlink{Kim}{Kim}). [[Baptiste Morin]] claims to provide a unified treatment via equivariant etale cohomology (\hyperlink{Morin06}{Morin06}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Alexander polynomial]] \item [[function field analogy]] \item The [[virtually fibered conjecture]] says that every [[closed manifold|closed]], [[irreducible manifold|irreducible]], [[atoroidal 3-manifold|atoroidal]] [[3-manifold]] with infinite [[fundamental group]] has a [[finite cover]] which is a [[surface]] [[fiber bundle]] over the [[circle]]. \item [[arithmetic Chern-Simons theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Christopher Deninger]], \emph{A note on arithmetic topology and dynamical systems}, (\href{http://arxiv.org/abs/math/0204274}{arxiv:0204274}) \item Dimoklis Goundaroulis, Aristides Kontogeorgis, \emph{On the Principal Ideal Theorem in Arithmetic Topology}, (\href{http://users.uoa.gr/~kontogar/talks/GkountPSATHA.pdf}{talk}, \href{http://arxiv.org/abs/0705.3937}{paper}) \item Minhyong Kim, \href{http://minhyongkim.files.wordpress.com/2013/05/baez13-12.pdf}{note} \item Thomas Koberda, \emph{Class Field Theory and the MKR Dictionary for Knots}, (\href{http://users.math.yale.edu/users/koberda/minorthesis.pdf}{pdf}) \item [[Baptiste Morin]], \emph{Applications of an Equivariant Etale Cohomology to Arithmetic Topology}, \href{http://arxiv.org/abs/math/0602064}{arxiv:0602064} and Utilisation d'une cohomologie étale équivariante en topologie arithmétique, Compositio Math. 144 (2008), no. 1, 32-60. \item Masanori Morishita, \emph{Analogies between Knots and Primes, 3-Manifolds and Number Rings}, (\href{http://arxiv.org/abs/0904.3399}{arxiv:0904.3399}) \item [[Masanori Morishita]] 2012, \emph{Knots and Primes: An Introduction to Arithmetic Topology}, Springer \item Alexander Reznikov, \emph{Embedded incompressible surfaces and homology of ramified coverings of three-manifolds}, Selecta Math. 6(2000), 1--39 \item Adam Sikora, \emph{Analogies between group actions on 3-manifolds and number fields}, (\href{http://arxiv.org/abs/math/0107210}{arxiv}) \item [[Toshitake Kohno]], [[Masanori Morishita]] (eds.), \emph{Primes and Knots}, Contemporary Mathematics, AMS 2006 (\href{http://www.ams.org/bookstore-getitem/item=CONM-416}{conm:416}) \item [[Masanori Morishita]], \emph{Knots and Primes: An Introduction to Arithmetic Topology}, 2012 (\href{https://books.google.co.uk/books?id=DOnkGOTnI78C&pg=PA156#v=onepage&q&f=false}{web}) \end{itemize} [[!redirects MKR dictionary]] [[!redirects MKR analogy]] \end{document}