\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{atom} \begin{quote}% This article is on the mathematical concept of atom as used in the theory of [[preorder|preorders]], and related mathematical notions. For small projective objects in categories see at [[atomic object]]. For still other uses, see [[atom (disambiguation)]]. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{compact_objects}{}\paragraph*{{Compact objects}}\label{compact_objects} [[!include compact object - contents]] \hypertarget{atoms}{}\section*{{Atoms}}\label{atoms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{remarks_on_terminology}{Remarks on terminology}\dotfill \pageref*{remarks_on_terminology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{atoms_and_tiny_elements}{Atoms and tiny elements}\dotfill \pageref*{atoms_and_tiny_elements} \linebreak \noindent\hyperlink{generalization_and_categorification}{Generalization and categorification}\dotfill \pageref*{generalization_and_categorification} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An atom in a [[poset]] is a [[minimal element]] among those which are not actually the [[bottom element|minimum]]. Thus an atom is as small as possible without being nothing. In an atomic poset, every element may be broken down (typically not uniquely) into atoms. A related but slightly weaker concept is that of ``tiny element'', which has important generalizations in the context of enriched category theory. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $S$ be a [[poset]] (or [[proset]]) with a [[bottom element]] $\bot$. Recall that an element of $S$ is \textbf{[[positive element|positive]]} if it is not a bottom element. An element $a$ of $S$ is \textbf{atomic} if, given any element $p \leq a$, $p$ is positive iff $a \leq p$. An \textbf{atom} of $S$ is simply an atomic element of $S$. Note that every atom must be positive (since $a \leq a$). The atoms are precisely the [[minimal elements]] of the set of positive elements. For a poset, $a$ is atomic iff every $p \leq a$ is positive iff $p = a$. Using [[classical logic]] too, $a$ is atomic iff every $p \leq a$ satisfies $p = \bot$ [[xor]] $p = a$. The p(r)oset $S$ is \textbf{atomic} (or more commonly in the literature, \textbf{atomistic}; see remarks below) if every element is a [[supremum]] of atoms. In this case, every element $x$ is a supremum of those atoms $a \leq x$. Note that $\bot$ is a supremum of no atoms, and every atom is a supremum of itself, so the condition is really about the nontrivial nonatomic elements. In [[constructive mathematics]], we require a more complicated definition of a [[positive element]], but the other definitions above remain correct (under the stated conditions), once we have that. In [[predicative mathematics|predicative]] constructive mathematics, positivity cannot be defined at all, and $S$ must come equipped with a [[positivity predicate]] before we may consider its atoms. \hypertarget{remarks_on_terminology}{}\subsubsection*{{Remarks on terminology}}\label{remarks_on_terminology} There is some terminological variance in the literature to the notion of atomic poset as defined here. In particular, \href{http://en.wikipedia.org/wiki/Atom_%28order_theory%29}{Wikipedia} defines an \emph{atomic poset} to be a poset in which every positive element has an atom below it, and refers to our stronger notion of atomic poset by the term ``atomistic poset''. Note well that the Wikipedia conventions seem to be the ones observed in most lattice-theoretic texts. ``Atomic'' and ``Atomistic'' differ for the simple example of the [[divisor lattice]] for some number $n$. The atoms in this lattice are prime numbers while it may also contain [[semi-atom|semi-atoms]] which are powers of primes. This lattice is atomic because any object not the [[bottom]], $1$, is divisible by a prime in the lattice. However it is not generally atomistic, but is instead uniquely semi-atomistic (every object is the product of a unique set of semi-atoms with bottom corresponding to the empty set), which is one way of stating the [[fundamental theorem of arithmetic]], also known as the \emph{unique factorization theorem}. The two notions coincide in the case of complete Boolean algebras $B$. Indeed, suppose $B$ is atomic in the Wikipedia sense, and for any element $b \in B$, consider the relative complement \begin{displaymath} c = b \wedge \neg (\bigvee \{atoms\, a: a \leq b\}) \end{displaymath} To show $B$ is atomistic, it suffices to show $c = 0$. If not, then there is an atom $a'$ such that $a' \leq c$, which means both $a' \leq b$ and \begin{displaymath} a' = a' \wedge a' \leq a' \wedge \bigvee \{atoms\, a: a \leq b\} = 0 \end{displaymath} since $a' \leq \neg(\bigvee \{atoms\, a: a \leq b\})$. This is a contradiction. Our (\emph{pro tem}) decision to define the word ``atomic'' in the idiosyncratic nLab sense above is consistent with its use elsewhere in category theory; see the sections below on atomic objects and on categorification. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} In a [[power set]] the atoms are the [[singleton subsets]]. Every power set is atomic, and in fact every atomic [[complete boolean algebra]] is (up to [[isomorphism]]) a power set. \end{example} \begin{example} \label{}\hypertarget{}{} In a [[lattice of subtoposes]] the atoms are the 2-valued [[Boolean toposes]]. See \href{subtopos#BooleantoposesAreAtoms}{this proposition}. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} If $a$ is an atom in a [[lattice]] or more generally a [[meet]] [[semilattice]] and $b$ any other element then (using classical logic) \begin{displaymath} a \wedge b \in \{a, \bot\} . \end{displaymath} This is simply because $a \wedge b \leq a$, so equals either $a$ or $\bot$. \hypertarget{atoms_and_tiny_elements}{}\subsection*{{Atoms and tiny elements}}\label{atoms_and_tiny_elements} If $E$ is a poset or preorder, in other words a $\mathbf{2}$-[[enriched category]], an element $e \in E$ is \emph{[[tiny object|tiny]]} if the hom $E(e, -)\colon E \to \mathbf{2}$ preserves all [[supremum|sups]] that exist in $E$. It is arguable (from an [[nPOV]]) that the weaker concept of tiny element is more fundamental than the notion of atom; for example, as we will see below, replacing atoms by tiny elements permits one to generalize the characterization of power sets as complete atomic Boolean algebras. \begin{prop} \label{}\hypertarget{}{} A tiny element in a Boolean algebra is precisely an atom. \end{prop} \begin{proof} Let $a$ be an atom. Let $\{x_i\}$ be a collection of elements that admits a supremum such that $a \leq \bigvee_i x_i$. Then \begin{displaymath} a = a \wedge \bigvee_i x_i = \bigvee_i a \wedge x_i \end{displaymath} (where the second equation holds since $a \wedge -$ is a left [[adjoint functor|adjoint]], because $B$ is a [[Heyting algebra]]). Since $a$ is positive, for some $i$ the element $a \wedge x_i$ is positive as well. Trivially it holds that $a \wedge x_i \leq a$; since $a$ is an atom, the inequality is an equality. Thus $a \leq x_i$ for some $i$, which is what we want. If $a$ is not an atom, i.e., if $0 \lt b \lt a$ for some $b$, then \begin{displaymath} a = b \vee (a \wedge \neg b) \end{displaymath} If $B(a, -)$ preserved the join on the right, then either $a \leq b$ which is evidently false, or $a \leq a \wedge \neg b$, i.e., $a \leq \neg b$, i.e., $b = a \wedge b \leq 0$, also evidently false. Thus $B(a, -)$ does not preserve suprema. \end{proof} Only one half of this proposition holds (an atom is a tiny element) if we replace the Boolean algebra $B$ by a general [[frame]]. (In fact, this direction even holds in impredicative constructive mathematics, if the frame is equipped with a [[positive element|positivity predicate]].) On the other hand, tiny elements need not be atoms (an easy example is the frame of down-sets of a [[poset]], where principal down-sets are atomic objects, but generally not atoms in the underlying poset of the frame). Be this as it may, \href{http://www.acsu.buffalo.edu/~wlawvere/ToposMotion.pdf#page=6}{Lawvere} has written, ``In order to settle once and for all the various terminological differences, perhaps we can use a.t.o.m. as an abbreviation for `amazing tiny object model'.'' This is Lawvere's `objective' way of abbreviating ``atomic object''; the word `amazing' here is presumably chosen to evoke what Lawvere has called the ``amazing right adjoint'' to an exponential functor $(-)^D$, particularly in the case of [[synthetic differential geometry]] where such adjoints exist for [[infinitesimal object|infinitesimal objects]] $D$. \hypertarget{generalization_and_categorification}{}\subsection*{{Generalization and categorification}}\label{generalization_and_categorification} The result that an atomic complete Boolean algebra is isomorphic to a power set -- hence to a [[presheaf]] with values in the [[0-category]] $\mathbf{2} = (-1)Grpd$ of [[(-1)-groupoid|(-1)-groupoids]] -- may be generalized and categorified as follows. Let $E$ be a $V$-category, where $V$ is a [[cosmos]] (a complete, cocomplete, symmetric monoidal closed category). We define an object $e$ of $E$ to be \textbf{tiny} or \textbf{atomic} if $E(e, -) \colon E \to V$ preserves any $V$-colimit that exists in $E$. (As usual, the appropriate notion of colimit in the enriched setting is [[weighted colimit]].) In what follows, we suppose the full $V$-subcategory $Tiny(E)$ of atomic objects in $E$ is essentially small. The inclusion $i \colon Tiny(E) \hookrightarrow E$ induces a restricted Yoneda embedding \begin{displaymath} E \to V^{Tiny(E)^{op}} \end{displaymath} sending an object $e$ to $E(i-, e)$. We say that $E$ is \textbf{[[atomic category|atomic]]} if $i \colon Tiny(E) \hookrightarrow E$ is $V$-[[dense functor|dense]], in other words if every object $e$ of $E$ is a canonical colimit of atomic objects below it, in the precise sense that the following enriched [[coend]] exists, and its canonical map to $e$, \begin{displaymath} \int^{a \in Tiny(E)} E(i a, e) \cdot i a \to e, \end{displaymath} is an isomorphism. If $E$ is a preorder, i.e., is $\mathbf{2}$-enriched where $\mathbf{2}$ is the category of $(-1)$-categories, the coend amounts to the supremum \begin{displaymath} \sup \{i a: i a \leq p\} \end{displaymath} so that $E$ is atomic precisely if every element is the sup of the tiny elements below it. \begin{thm} \label{}\hypertarget{}{} A small-cocomplete atomic preorder $E$ is equivalent to the free sup-lattice $2^{T^{op}}$ generated by the preorder $T = Tiny(E)$ of tiny elements. Conversely, every free sup-lattice $2^{T^{op}}$ is small-cocomplete and atomic, where $T$ is the poset of tiny elements. \end{thm} N.B. ``Free sup-lattice'' refers to a left adjoint of the forgetful functor $U \colon SupLat \to Preord$ from sup-lattices to preorders. \begin{proof} Since $E$ is cocomplete, and since $\mathbf{2}^{Tiny(E)^{op}}$ is the free sup-lattice or cocomplete preorder generated from $Tiny(E)$, the inclusion $i \colon Tiny(E) \to E$ extends uniquely to a sup-preserving map \begin{displaymath} L \colon \mathbf{2}^{Tiny(E)^{op}} \to E \end{displaymath} which sends $X \colon Tiny(E)^{op} \to \mathbf{2}$ to \begin{displaymath} \int^{a \in Tiny(E)} X(a) \cdot i a = \sup \{i a: X(a) = 1\}. \end{displaymath} This $L$ is left adjoint to the restricted Yoneda embedding $R \colon E \to \mathbf{2}^{Tiny(E)^{op}}$. The condition that $E$ is atomic says that for each $e \in E$, the value of the counit of $L \dashv R$ at $e$ is an isomorphism \begin{displaymath} \int^a E(i a, e) \cdot i a \cong e. \end{displaymath} On the other hand, the value of the unit of $L \dashv R$ at an object $X$ is given by a string of isomorphisms \begin{displaymath} \itexarray{ X & \stackrel{Yoneda}{\cong} & \int^a X(a) \cdot Tiny(E)(-, a) \\ & \cong & \int^a X(a) \cdot E(i-, i a) \\ & \cong & E(i-, \int^a X(a) \cdot i a) } \end{displaymath} where the last isomorphism obtains from the fact that $E(i a, -)$ preserves colimits if $a$ is tiny. Thus the unit is also an isomorphism. For the converse: each representable object $T(-, t)$ of $\mathbf{2}^{T^{op}}$ is tiny, because the covariant functor $2^{T^{op}}(T(-, t), -)$, being the same as evaluation at $t$ by the Yoneda lemma, preserves colimits. Furthermore, every functor $X: T^{op} \to \mathbf{2}$ is a canonical colimit of representables, so that $2^{T^{op}}$ is atomic in addition to being cocomplete. \end{proof} \begin{cor} \label{}\hypertarget{}{} A complete atomic Boolean algebra $B$ is isomorphic to $2^T$, where $T$ is the discrete preorder of atoms of $B$. \end{cor} The argument given for the theorem above carries over without obstruction to the general enriched setting. In particular, replacing $\mathbf{2} = (-1)$-$Cat$ by its categorification $Set = 0$-$Cat$, we get the following result, first enunciated in Bunge's thesis. \begin{thm} \label{}\hypertarget{}{} A category $E$ is equivalent to a [[presheaf topos]] (functors with values in the 1-category [[Set]] of [[0-groupoids]]) if and only if it is cocomplete and atomic as a $Set$-category. Representables $C(-, c)$ are (among the) atomic objects of $Set^{C^{op}}$, and generate the presheaf topos by closing under all small colimits. \end{thm} (The literal statement in Bunge's thesis is that a category is equivalent to a presheaf category $Set^{C^{op}}$ if and only if it is cocomplete, regular, and has a generating set of atomic objects, but this is trivially the same since presheaf toposes are of course [[regular category|regular]].) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[compact object]] \item [[connected object]] \item [[Cauchy completion]] \end{itemize} [[!redirects atom]] [[!redirects atoms]] [[!redirects atomic element]] [[!redirects atomic elements]] \end{document}