\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{atomic site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_more_general_definition}{The more general definition}\dotfill \pageref*{the_more_general_definition} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{reference}{Reference}\dotfill \pageref*{reference} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Atomic sites} are [[sites]] $(\mathcal{C}, J_{at})$ equipped with the \emph{atomic topology} $J_{at}$. The corresponding [[sheaf toposes]] $Sh(\mathcal{C}, J_{at})$ are precisely the [[atomic topos|atomic Grothendieck toposes]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[site]] $(\mathcal{C}, J_{at})$ is called \textbf{atomic} if the [[covering sieve|covering]] [[sieves]] $S$ of $J_{at}$ are exactly the [[inhabited set|inhabited]] sieves $S\neq\emptyset$. A [[Grothendieck topology]] $J_{at}$ of this form is called \emph{atomic}. \end{defn} \hypertarget{example}{}\subsection*{{Example}}\label{example} Let $FinSet^{op}_{mono}$ be the opposite of the category $FinSet_{mono}$ with objects finite sets and monomorphisms. Then $(FinSet^{op}_{mono}, J_{at})$ is an atomic site and the corresponding sheaf topos $Sh(FinSet^{op}_{mono}, J_{at})$ is the [[Schanuel topos]]. That $J_{at}$ is indeed a [[Grothendieck topology]] is ensured by prop. \ref{atomic_ore}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{atomic_ore}\hypertarget{atomic_ore}{} Let $\mathcal{C}$ be a [[category]]. Then $\mathcal{C}$ can be made into an atomic site if and only if for any diagram \begin{displaymath} \itexarray{ & & A \\ & & \downarrow\\ B & \to & C } \end{displaymath} there is an object $D$ and arrows $D \to A, B$ such that the following diagram commutes: \begin{displaymath} \itexarray{ D & \to & A \\ \downarrow & & \downarrow\\ B & \to & C } \end{displaymath} \end{prop} \begin{proof} This is exactly what is needed for the pullback stability axiom to hold, and the other axioms are immediate. \end{proof} The condition occurring in the proposition is called the (right) [[Ore condition]]. It is a result by [[Peter Johnstone|P. T. Johnstone]] (1979) that $Set^{\mathcal{C}^{op}}$ is a [[De Morgan topos]] precisely if $\mathcal{C}$ satisfies the Ore condition. Whence we see that every [[atomic topos|atomic Grothendieck toposes]] is a ([[Boolean topos|Boolean]]) subtopos of a De Morgan [[presheaf topos]]. Recall that the [[dense topology]] $J_d$ on a category $\mathcal{C}$ consists of all sieves $S\in J_d(C)$ with the property that given $f:D\to C$ there exists $g:E\to D$ such that $f\cdot g\in J_d(C)$. The atomic topology is a special case of this: \begin{prop} \label{atomic_dense}\hypertarget{atomic_dense}{} Let $\mathcal{C}$ be a [[category]] satisfying the [[Ore condition]]. Then the atomic topology $J_{at}$ coincides with the dense topology $J_d$. \end{prop} \begin{proof} For $\mathcal{C}=\emptyset$ the claim is trivial. So let $C\in\mathcal{C}$ be an object and $S$ a sieve on $C$. Assume $S\in J_d(C)$, then for $id\colon C\to C$ there exists $g:E\to C$ with $id\cdot g\in S$ whence $S\in J_{at}(C)$. Conversely, assume $S\in J_{at}(C)$ and let $f:D\to C$ be a morphism. Then there exists $g\in S$ by assumption and the diagram $D\overset{f}{\rightarrow} C \overset{g}{\leftarrow} E$ can be completed to a commutative square $f\cdot i = g\cdot h$ but $g\cdot h\in S$ since $g\in S$ and $S$ is a sieve. Whence $f \cdot i\in S$ and, accordingly, $S\in J_d(C)$. \end{proof} In other words, the atomic topology is just the [[dense topology]] on categories satisfying the Ore condition. Since the corresponding sheaf toposes of the dense topology are just the double negation subtoposes of the corresponding presheaf topos we finally get: \begin{prop} \label{}\hypertarget{}{} Atomic Grothendieck toposes i.e. toposes (equivalent to) $Sh(\mathcal{C}, J_{at})$ for $(\mathcal{C}, J_{at})$ an atomic site are precisely (the toposes equivalent to) the [[double negation|double negation subtoposes]] $Sh_{\neg\neg}(Set^{\mathcal{C}^{op}})$ for a De Morgan presheaf topos $Set^{\mathcal{C}^{op}}$. $\qed$ \end{prop} The sheaves of atomic sheaf toposes $Sh(\mathcal{C}, J_{at})$ are easy to describe: \begin{prop} \label{atomic_sheaf}\hypertarget{atomic_sheaf}{} Let $(\mathcal{C}, J_{at})$ be an atomic site. A presheaf $P\in Set^{\mathcal{C}^{op}}$ is a sheaf for $J_{at}$ iff for any morphism $f:D\to C$ and any $y\in P(D)$ , if $P(g)(y)=P(h)(y)$ for all diagrams \begin{displaymath} E\overset{g}{\underset{h}{\rightrightarrows}} D\overset{f}{\to} C \end{displaymath} with $f\cdot g=f\cdot h$ , then $y=P(f)(x)$ for a unique $x\in P(C)$. \end{prop} For the proof see Mac Lane-Moerdijk (\hyperlink{MM94}{1994}, pp.126f). \hypertarget{the_more_general_definition}{}\subsection*{{The more general definition}}\label{the_more_general_definition} Thus far we have presented the classical approach as presented in Mac Lane-Moerdijk (\hyperlink{MM94}{1994}) going back to Barr-Diaconescu (\hyperlink{BD80}{1980}) but it was observed by [[Olivia Caramello|O. Caramello]] (\hyperlink{Ca12}{2012}) that the atomic topology can in fact be defined on arbitrary categories not only on those satisfying the [[Ore condition]]. \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a category. The \emph{atomic topology} $J_{at}$ on $\mathcal{C}$ is the smallest [[Grothendieck topology]] containing all the nonempty sieves. A site of the form $(\mathcal{C}, J_{at})$ is called \emph{atomic}. \end{defn} Note that $J_{at}$ is well defined as the intersection of all Grothendieck topologies with the property that all nonempty sieves cover. The following proposition justifies the terminology: \begin{prop} \label{}\hypertarget{}{} Let $(\mathcal{C}, J_{at})$ be an atomic site. Then $Sh(\mathcal{C}, J_{at})$ is an [[atomic topos|atomic Grothendieck topos]]. \end{prop} \begin{proof} The main idea is to consider the full subcategory $\mathcal{C}'$ on those objects $U$ with $\emptyset\notin J_{at}(U)$ together with the [[dense sub-site|induced topology]] $J'_{at}=J_{at}|_{\mathcal{C}'}$. Then one shows that $\mathcal{C}'$ satisfies the Ore condition and concludes by the [[comparison lemma]] that $Sh(\mathcal{C}', J'_{at})\simeq Sh(\mathcal{C}, J_{at})$. For the details see Caramello (\hyperlink{Ca12}{2012}, prop.1.4). \end{proof} \begin{example} \label{}\hypertarget{}{} Consider the category $\mathcal{C}$ on the `walking co-span' $A\overset{f}{\rightarrow} C\overset{g}{\leftarrow} B$. $\mathcal{C}$ does not satisfy the [[Ore condition]]. The atomic topology $J_{at}$ is given by \begin{displaymath} J_{at}(A)=\{\{id_A\},\emptyset\} \qquad J_{at}(B)=\{\{id_B\},\emptyset\} \end{displaymath} \begin{displaymath} J_{at}(C)=\{\{ id_C, f,g\},\{f \}, \{ g \},\{f,g\},\emptyset\} \quad . \end{displaymath} Here $\emptyset\in J_{at}(A)$ , respectively $\emptyset\in J_{at}(B)$, due to the stability axiom applied to $f^\ast(\{g\})=\emptyset$ , respectively to $g^\ast(\{f\})=\emptyset$ . Whereas $\emptyset\in J_{at}({C})$ by the transitivity axiom applied to $\{f\}\in J_{at}(C)$ and the sieve $\emptyset$ since $f^{\ast}(\emptyset)=\emptyset\in J_{at}(A)$. Accordingly the subcategory $\mathcal{C}'$ is empty and $Sh(\mathcal{C},J_{at})\simeq 1$ is degenerate. In particular, $Sh(\mathcal{C},J_{at})$ is not equivalent to $Sh(\mathcal{C},J_d)\simeq Sh_{\neg\neg}(Set^{\mathcal{C}^{op}})\simeq Set\times Set$. So we see that the atomic topology on $\mathcal{C}$ is distinct from the [[dense topology]]. For completeness we describe the latter: \begin{displaymath} J_{d}(A)=\{\{id_A\}\} \qquad J_{d}(B)=\{\{id_B\}\} \end{displaymath} \begin{displaymath} J_{d}(C)=\{\{id_C, f,g\},\{f,g\}\} \quad . \end{displaymath} Further details on $Set^{\mathcal{C}^{op}}$, the topos of hypergraphs, may be found at [[hypergraph]]. \end{example} In the example, we observed that dense and the atomic topology need not coincide for categories not satisfying the [[Ore condition]]. In fact more can be said here: \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[category]]. Then $J_{d}\subseteq J_{at}$ in general, but $J_d=J_{at}$ precisely if $\mathcal{C}$ satisfies the [[Ore condition]]. \end{prop} \begin{proof} The proof of prop. \ref{atomic_dense} already showed that the sieves of the dense topology $J_d$ are never empty regardless of the Ore condition. From prop. \ref{atomic_ore} follows that the atomic topology $J_{at}$ will additionally contain empty sieves precisely if $\mathcal{C}$ does not satisfy the Ore condition. \end{proof} In particular, $Sh(\mathcal{C},J_{at})\subseteq Sh(\mathcal{C},J_{d})\simeq Sh_{\neg\neg}(Set^{\mathcal{C}^{op}})$ . \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[dense topology]] \item [[atomic topos]] \item [[atomic geometric morphism]] \item [[Ore condition]] \item [[De Morgan topos]] \end{itemize} \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} \begin{itemize}% \item [[Michael Barr]], [[Radu Diaconescu]], \emph{Atomic Toposes} , JPAA \textbf{17} (1980) pp.1-24. (\href{http://www.math.mcgill.ca/barr/papers/atom.top.pdf}{pdf}) \item [[Olivia Caramello]], \emph{Atomic toposes and countable categoricity} , Appl. Cat. Struc. \textbf{20} no. 4 (2012) pp.379-391. (\href{http://arxiv.org/abs/0811.3547}{arXiv:0811.3547}) \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. (pp.115, 126) \end{itemize} [[!redirects atomic topology]] \end{document}