\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{automorphic form} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{theta_functions}{}\paragraph*{{Theta functions}}\label{theta_functions} [[!include theta functions - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{ModularForms}{Modular forms as classical automorphic forms on $PSL(2,\mathbb{R})$}\dotfill \pageref*{ModularForms} \linebreak \noindent\hyperlink{ModularFormsAdAdelicAutomorphicForms}{Modular forms as adelic automorphic forms on $GL(2,\mathbb{A})$}\dotfill \pageref*{ModularFormsAdAdelicAutomorphicForms} \linebreak \noindent\hyperlink{InNumberTheory}{General adelic automorphic forms}\dotfill \pageref*{InNumberTheory} \linebreak \noindent\hyperlink{dirichlet_characters}{Dirichlet characters}\dotfill \pageref*{dirichlet_characters} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{function_field_analogy}{Function field analogy}\dotfill \pageref*{function_field_analogy} \linebreak \noindent\hyperlink{application_in_string_theory}{Application in string theory}\dotfill \pageref*{application_in_string_theory} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesInStringTheory}{In string theory}\dotfill \pageref*{ReferencesInStringTheory} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Quite generally, \emph{automorphic forms} are suitably well-behaved [[functions]] on a [[quotient]] space $K\backslash X$ where $K$ is typically a [[discrete group]], hence suitable functions on $X$ which are [[invariant]] under the [[action]] of a discrete group. The precise definition has evolved a good bit through time. [[Henri Poincaré]] considered [[analytic functions]] invariant under a discrete infinite group of [[fractional linear transformations]] and called them \emph{[[Fuchsian functions]]} (after his advisor [[Lazarus Fuchs]]). More generally, automorphic forms in the modern sense are suitable functions on a [[coset space]] $K \backslash G$, hence functions on [[groups]] $G$ which are [[invariant]] with respect to the [[action]] of the [[subgroup]] $K \hookrightarrow G$. The archetypical example here are [[modular forms]] regarded as functions on $K\backslash PSL(2,\mathbb{R})$ where $K$ is a [[congruence subgroup]], and for some time the terms ``modular form'' and ``automorphic form'' were used essentially synonymously, see \hyperlink{ModularForms}{below}. Based on the fact that a [[modular form]] is a [[section]] of some [[line bundle]] on the [[moduli stack of elliptic curves]], [[Pierre Deligne]] defined an automorphic form to be a section of a line bundle on a [[Shimura variety]]. By pullback of functions the linear space of such functions hence constitutes a [[representation]] of $G$ and such representations are then called \emph{automorphic representations} (e.g. \hyperlink{Martin13}{Martin 13, p. 9}) , specifically so if $G = GL_n(\mathbb{A}_K)$ is the [[general linear group]] with [[coefficients]] in a [[ring of adeles]] of some [[global field]] and $K = GL_n(K)$. This is the subject of the \emph{[[Langlands program]]}. There one also considers [[unramified]] such representations, which are constituted by functions that in addition are invariant under the action of $GL_n$ with coefficients in the [[integral adeles]], see \hyperlink{InNumberTheory}{below}. \hypertarget{ModularForms}{}\subsubsection*{{Modular forms as classical automorphic forms on $PSL(2,\mathbb{R})$}}\label{ModularForms} By a standard definition, a \emph{[[modular form]]} is a [[holomorphic function]] on the [[upper half plane]] $\mathfrak{H}$ satisfying a specified transformation property under the [[action]] of a given [[congruence subgroup]] $\Gamma$ of the [[modular group]] $G = PSL(2,\mathbb{Z})$ (e.g. \hyperlink{Martin13}{Martin 13, definition 1}, \hyperlink{Litt}{Litt, def. 1}). But the [[upper half plane]] is itself the [[coset]] of the [[projective linear group]] $G = PSL(\mathbb{R})$ by the subgroup $K = Stab_G(\{i\}) \simeq SO(2)/\{\pm I\}$ \begin{displaymath} f\colon \mathfrak{H} \simeq PSL(2,\mathbb{R})/K \,. \end{displaymath} In view of this, one finds that every modular function $f \colon \mathfrak{H} \to \mathbb{C}$ lifts to a function \begin{displaymath} \tilde f \colon \Gamma\backslash PSL(2,\mathbb{R}) \longrightarrow \mathbb{C} \,, \end{displaymath} hence to a function on $G$ which is actually \emph{invariant} with respect to the $\Gamma$-action (``automorphy''), but which instead now satisfies some transformation property with respect to the action of $K$, as well as some well-behavedness property This $\tilde f$ is the incarnation as an \emph{automorphic function} of the modular function $f$ (e.g. \hyperlink{Martin13}{Martin 13, around def. 3}, \hyperlink{Litt}{Litt, section 2}). For emphasis these automorphic forms on $PSL(2,\mathbb{R})$ equivalent to modular forms are called \emph{classical modular forms}. This is where the concept of automorphic forms originates (for more on the history see e.g. \href{http://mathoverflow.net/a/124785/381}{this MO comment} for the history of terminology) \href{http://mathoverflow.net/a/21556/381}{and this one}. \hypertarget{ModularFormsAdAdelicAutomorphicForms}{}\subsubsection*{{Modular forms as adelic automorphic forms on $GL(2,\mathbb{A})$}}\label{ModularFormsAdAdelicAutomorphicForms} Where by the \hyperlink{ModularForms}{above} an ordinary [[modular form]] is equivalently a suitably periodic function on $SL(2,\mathbb{R})$, one may observe that the [[real numbers]] $\mathbb{R}$ appearing as [[coefficients]] in the latter are but one of many [[p-adic number]] completions of the [[rational numbers]]. Hence it is natural to consider suitably periodic functions on $SL(2,\mathbb{Q}_p)$ of all these completions at once. This means to consider functions on $SL(2,\mathbb{A})$, for $\mathbb{A}$ the [[ring of adeles]]. These are the \emph{adelic automorphic forms}. They may be thought of as subsuming ordinary modular forms for all [[level structures]]. (e.g. \hyperlink{Martin13}{Martin 13, p. 8}, also \hyperlink{GoldfeldHundley11}{Goldfeld-Hundley 11, lemma 5.5.10}, \hyperlink{Bump}{Bump, section 3.6}, \hyperlink{Gelbhart84}{Gelbhart 84, p. 22}): we have \begin{displaymath} \Gamma \backslash PSL(2,\mathbb{R}) \simeq Z(\mathbb{A}) GL_2(\mathbb{Q})\backslash GL_2(\mathbb{A})/ GL_2(\mathbb{A}_{\mathbb{Z}}) \,, \end{displaymath} where $\mathbb{A}_{\mathbb{Z}}$ are the [[integral adeles]]. (The [[double coset]] on the right is analogous to that which appears in the [[Weil uniformization theorem]], see the discussion there and at \emph{[[geometric Langlands correspondence]]} for more on this analogy.) This leads to the more general concept of \emph{adelic automorphic forms} \hyperlink{InNumberTheory}{below}. \hypertarget{InNumberTheory}{}\subsubsection*{{General adelic automorphic forms}}\label{InNumberTheory} More generally, for the [[general linear group]] $G = GL_n(\mathbb{A}_F)$, for any $n$ and with [[coefficients]] in a [[ring of adeles]] $\mathbb{A}_F$ of some [[number field]] $F$, and for the subgroup $GL_n(F)$, then sufficiently well-behaved functions on $GL_n(F)\backslash GL_n(\mathbb{A}_F)$ form [[representations]] of $GL_n(\mathbb{A}_{F})$ which are called \emph{[[automorphic representations]]}. Here ``well-behaved'' typically means \begin{enumerate}% \item \textbf{finiteness} -- the functions [[invariant]] under the [[action]] of the [[maximal compact subgroup]] [[span]] a [[finite number|finite]] [[dimension|dimensional]] [[vector space]]; \item \textbf{central character} -- the action by the [[center of a group|center]] is is controled by (\ldots{}something\ldots{}); \item \textbf{growth} -- the functions are [[bounded functions]]; \item \textbf{cuspidality} -- (\ldots{}) \end{enumerate} (e.g. \hyperlink{Frenkel05}{Frenkel 05, section 1.6}, \hyperlink{Loeffler11}{Loeffler 11, page 4}, \hyperlink{Martin13}{Martin 13, definition 4}, \hyperlink{Litt}{Litt, def.4}). (These conditions are not entirely set in stone, they are being varied according to application (see e.g. \href{http://mathoverflow.net/a/66598/381}{this MO comment})). In particular one considers subspaces of ``[[unramified]]'' such functions, namely those which are in addition trivial on the subgroup of $GL_n$ of the [[integral adeles]] $\mathcal{O}_F$ (\hyperlink{GoldfeldHundley11}{Goldfeld-Hundley 11, def. 2.1.12}). This means that that unramified automorphic representations are spaces of functions on a [[double coset]] of the form \begin{displaymath} GL_n(F)\backslash GL_n(\mathbb{A}_F) / GL_n(\mathcal{O}_F) \,. \end{displaymath} See at \emph{[[Langlands correspondence]]} for more on this. Such double cosets are [[analogy|analogous]] to those appearing in the [[Weil uniformization theorem]] in [[complex analytic geometry]], an analogy which leads to the conjecture of the [[geometric Langlands correspondence]]. \hypertarget{dirichlet_characters}{}\subsubsection*{{Dirichlet characters}}\label{dirichlet_characters} For the special case of $n = 1$ in the discussion of adelic automorphic forms \hyperlink{InNumberTheory}{above}, the group \begin{displaymath} GL_1(\mathbb{A}_F) = (\mathbb{A}_F)^\times = \mathbb{I}_F \end{displaymath} is the [[group of ideles]] and the quotient \begin{displaymath} GL_1(F) \backslash GL_1(\mathbb{A}_F) = F^\times \backslash (\mathbb{A}_F)^\times \end{displaymath} is the [[idele class group]]. Automorphic forms in this case are effectively [[Dirichlet characters]] in disguise\ldots{} (\hyperlink{GoldfeldHundley11}{Goldfeld-Hundley 11, theorem 2.1.9}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{function_field_analogy}{}\subsubsection*{{Function field analogy}}\label{function_field_analogy} [[!include function field analogy -- table]] \hypertarget{application_in_string_theory}{}\subsubsection*{{Application in string theory}}\label{application_in_string_theory} In [[string theory]] [[partition functions]] tend to be automorphic forms for [[U-duality]] groups. See the \hyperlink{ReferencesInStringTheory}{references below} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[modular form]], [[topological modular form]], [[topological automorphic form]] \item [[automorphic L-function]] \item [[Langlands duality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Introductions and surveys include \begin{itemize}% \item [[Pierre Deligne]], \emph{Fromed Modulaires et representations de $GL(2)$} (\href{http://publications.ias.edu/sites/default/files/Number21.pdf}{}) \item [[Stephen Gelbart]], starting on p. 20 (196) of \emph{An elementary introduction to the Langlands program}, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 177--219 (\href{http://www.ams.org/journals/bull/1984-10-02/S0273-0979-1984-15237-6/}{web}) \item Nolan Wallach, \emph{Introductory lectures on automorphic forms} (\href{http://math.ucsd.edu/~nwallach/luminy-port2.pdf}{pdf}) [[!redirects automorphic forms]] \item E. Kowalski, section 3 of \emph{Automorphic forms, L-functions and number theory (March 12--16) Three Introductory lectures} (\href{http://www.math.ethz.ch/~kowalski/lectures.pdf}{pdf}) \item [[Dorian Goldfeld]], [[Joseph Hundley]], chapter 2 of \emph{Automorphic representations and L-functions for the general linear group}, Cambridge Studies in Advanced Mathematics 129, 2011 (\href{https://www.maths.nottingham.ac.uk/personal/ibf/text/gl2.pdf}{pdf}) \item Daniel Bump, \emph{Automorphic forms and representations} \item David Loeffler, \emph{Computing with algebraic automorphic forms}, 2011 ([[LoefflerAutomorphic.pdf:file]]) \item [[Kimball Martin]], \emph{A brief overview of modular and automorphic forms},2013 \href{http://www2.math.ou.edu/~kmartin/papers/mfs.pdf}{pdf} \item [[Daniel Litt]], \emph{Automorphic forms notes, part I} (\href{http://math.stanford.edu/~dlitt/Talks/automorphicformspt1.pdf}{pdf}) \item \href{http://math.stanford.edu/~conrad/modseminar/pdf/L10.pdf}{pdf} \item \href{http://www.math.uni-bonn.de/people/mueller/skripte/specauto.pdf}{pdf} \item Toshitsune Miyake's \emph{Modular Forms} 1976 (English version 1989) (\href{projecteuclid.org/euclid.bams/1183556263}{review pdf}) \end{itemize} Review in the context of the [[geometric Langlands correspondence]] is in \begin{itemize}% \item [[Edward Frenkel]], \emph{Lectures on the Langlands Program and Conformal Field Theory}, in \emph{Frontiers in number theory, physics, and geometry II}, Springer Berlin Heidelberg, 2007. 387-533. (\href{http://arxiv.org/abs/hep-th/0512172}{arXiv:hep-th/0512172}) \end{itemize} The generalization of theta functions to [[automorphic forms]] is due to \begin{itemize}% \item [[André Weil]], \emph{Sur certaines groups d'operateur unitaires}, Acta. Math. 111 (1964), 143-211 \end{itemize} see \href{Langlands+program#Gelbhart84}{Gelbhart 84, page 35 (211)} for review. Further developments here include \begin{itemize}% \item [[Stephen Kudla]], \emph{Relations between automorphic forms produced by theta-functions}, in \emph{Modular Functions of One Variable VI}, Lecture Notes in Math. 627, Springer, 1977, 277--285. \item [[Stephen Kudla]], \emph{Theta functions and Hilbert modular forms},Nagoya Math. J. 69 (1978) 97-106 \item [[Jeffrey Stopple]], \emph{Theta and $L$-function splittings}, Acta Arithmetica LXXII.2 (1995) (\href{http://matwbn.icm.edu.pl/ksiazki/aa/aa72/aa7221.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesInStringTheory}{}\subsubsection*{{In string theory}}\label{ReferencesInStringTheory} The relation between [[string theory]] on [[Riemann surfaces]] and automorphic forms was first highlighted in \begin{itemize}% \item [[Edward Witten]], \emph{Quantum field theory, Grassmannians, and algebraic curves}, Comm. Math. Phys. Volume 113, Number 4 (1988), 529-700 (\href{http://projecteuclid.org/euclid.cmp/1104160350}{Euclid}) \end{itemize} See also \begin{itemize}% \item [[Michael Green]], Jorge G. Russo, Pierre Vanhove, \emph{Automorphic properties of low energy string amplitudes in various dimensions} (\href{http://arxiv.org/abs/1001.2535}{arXiv:1001.2535}) \end{itemize} [[!redirects automorphic forms]] [[!redirects automorphic representation]] [[!redirects automorphic representations]] [[!redirects Fuchsian function]] [[!redirects Fuchsian functions]] \end{document}