\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{automorphism of a vertex operator algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_perturbative_string_vacua_and_conneslott_models}{In perturbative string vacua and Connes-Lott models}\dotfill \pageref*{in_perturbative_string_vacua_and_conneslott_models} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{moonshine}{Moonshine}\dotfill \pageref*{moonshine} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{AsSymmetriesOfStringCompactifications}{As symmetries of non-geometric string compactifications}\dotfill \pageref*{AsSymmetriesOfStringCompactifications} \linebreak \noindent\hyperlink{moonshine_automorphism_groups}{Moonshine automorphism groups}\dotfill \pageref*{moonshine_automorphism_groups} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[vertex operator algebra]] $\mathcal{V}$ ([[VOA]]) or [[super vertex operator algebra]] ([[sVOA]]), or more generally a full [[2d CFT]] (of which the [[VOA]] is the local and chiral data) or [[2d SCFT]] (hence a ``[[2-spectral triple]]'') one may ask (as for any [[object]] in any [[category]]) for its [[automorphisms]], hence the [[homomorphisms]] \begin{displaymath} \mathcal{V} \overset{\simeq}{\longrightarrow} \mathcal{V} \end{displaymath} in the corresponding [[category]] of sVOA-s/[[2d SCFTs]], from $\mathcal{V}$ to itself, which are [[invertible morphism|invertible]] and hence constitute a \emph{[[symmetry]]} of $\mathcal{V}$. \hypertarget{in_perturbative_string_vacua_and_conneslott_models}{}\subsection*{{In perturbative string vacua and Connes-Lott models}}\label{in_perturbative_string_vacua_and_conneslott_models} If $\mathcal{V}$ is a [[direct sum|direct summand]] of a [[2d CFT]]/[[2-spectral triple]] encoding a [[perturbative string theory vacuum]], such as, typically, a [[rational 2d CFT]] such as a [[Gepner model]] encoding a ``[[non-geometric string vacuum|non-geometric]]'' [[KK-compactification]], then the automorphisms of $\mathcal{V}$ are the [[formal dual|formal duals]] to [[symmetries]] of that [[KK-compactification]]-[[fiber]] space (see the references \hyperlink{AsSymmetriesOfStringCompactifications}{below}) In the point-particle limit where the [[2d SCFT]]/[[2-spectral triple]] becomes an ordinary [[spectral triple]] (see \href{2-spectral+triple#References}{there}) this hence reduces to the automorphisms of internal algebras as discussed in [[Connes-Lott-Chamseddine-Barrett models]]. (\ldots{}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{moonshine}{}\subsubsection*{{Moonshine}}\label{moonshine} [[moonshine]]-examples: \begin{itemize}% \item The [[Conway group]] $CO_{0}$ is the [[automorphism group|group of]] [[automorphisms of a super VOA]] of the unique chiral [[number of supersymmetries|N=1]] [[super vertex operator algebra]] of [[central charge]] $c = 12$ without fields of [[conformal weight]] $1/2$ (\hyperlink{Duncan05}{Duncan 05}, see also \hyperlink{PaquettePerssonVolpato17}{Paquette-Persson-Volpato 17, p. 9}) \item similarly, there is a super VOA, the \emph{[[Monster vertex operator algebra]]}, whose [[automorphism group|group of]] of [[automorphisms of a VOA]] is the [[monster group]] (\hyperlink{FrenkelLepowskiMeurman89}{Frenkel-Lepowski-Meurman 89}, \hyperlink{GriessLam11}{Griess-Lam 11}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} (\ldots{}) \hypertarget{AsSymmetriesOfStringCompactifications}{}\subsubsection*{{As symmetries of non-geometric string compactifications}}\label{AsSymmetriesOfStringCompactifications} Automorphisms of [[vertex operator algebras]] regarded as [[symmetries]] of non-geometric [[perturbative string theory vacua]] (e.g. [[Gepner models]]): \begin{itemize}% \item [[Chris Hull]], Dan Israel, Alessandra Sarti, \emph{Non-geometric Calabi-Yau Backgrounds and K3 automorphisms}, JHEP11(2017)084 (\href{https://arxiv.org/abs/1710.00853}{arXiv:1710.00853}) \end{itemize} \hypertarget{moonshine_automorphism_groups}{}\subsubsection*{{Moonshine automorphism groups}}\label{moonshine_automorphism_groups} \begin{itemize}% \item [[Igor Frenkel]], [[James Lepowsky]], Arne Meurman, \emph{Vertex operator algebras and the monster}, Pure and Applied Mathematics \textbf{134}, Academic Press, New York 1998. liv+508 pp. \href{http://www.ams.org/mathscinet-getitem?mr=996026}{MR0996026} \item John F. Duncan, \emph{Super-moonshine for Conway's largest sporadic group} (\href{https://arxiv.org/abs/math/0502267}{arXiv:math/0502267}) \item [[Robert Griess]] Jr., Ching Hung Lam, \emph{A new existence proof of the Monster by VOA theory} (\href{https://arxiv.org/abs/1103.1414}{arXiv:1103.1414}) \item [[Shamit Kachru]], [[Natalie Paquette]], [[Roberto Volpato]], \emph{3D String Theory and Umbral Moonshine} (\href{http://arxiv.org/abs/1603.07330}{arXiv:1603.07330}) \item [[Natalie Paquette]], Daniel Persson, [[Roberto Volpato]], \emph{Monstrous BPS-Algebras and the Superstring Origin of Moonshine} (\href{http://arxiv.org/abs/1601.05412}{arXiv:1601.05412}) \item [[Miranda Cheng]], Sarah M. Harrison, [[Roberto Volpato]], Max Zimet, \emph{K3 String Theory, Lattices and Moonshine} (\href{https://arxiv.org/abs/1612.04404}{arXiv:1612.04404}) \item [[Natalie Paquette]], Daniel Persson, Roberto Volpato, \emph{BPS Algebras, Genus Zero, and the Heterotic Monster} (\href{https://arxiv.org/abs/1701.05169}{arXiv:1701.05169}) \item [[Shamit Kachru]], Arnav Tripathy, \emph{The hidden symmetry of the heterotic string} (\href{https://arxiv.org/abs/1702.02572}{arXiv:1702.02572}) \end{itemize} [[!redirects automorphisms of a vertex operator algebra]] [[!redirects automorphisms of vertex operator algebras]] [[!redirects automorphism of a VOA]] [[!redirects automorphisms of a VOA]] [[!redirects automorphisms of VOAs]] [[!redirects automorphism of a super vertex operator algebra]] [[!redirects automorphisms of a super vertex operator algebra]] [[!redirects automorphisms of super vertex operator algebras]] [[!redirects automorphism of a super VOA]] [[!redirects automorphisms of a super VOA]] [[!redirects automorphisms of super VOAs]] [[!redirects automorphism of an sVOA]] [[!redirects automorphisms of an sVOA]] [[!redirects automorphisms of sVOAs]] [[!redirects automorphism of a 2d conformal field theory]] [[!redirects automorphisms of a 2d conformal field theory]] [[!redirects automorphisms of 2d conformal field theories]] [[!redirects automorphism of a 2d CFT]] [[!redirects automorphisms of a 2d CFT]] [[!redirects automorphisms of 2d CFT]] [[!redirects automorphism of a 2d super-conformal field theory]] [[!redirects automorphisms of a 2d super-conformal field theory]] [[!redirects automorphisms of 2d super-conformal field theories]] [[!redirects automorphism of a 2d sCFT]] [[!redirects automorphisms of a 2d sCFT]] [[!redirects automorphisms of 2d sCFT]] [[!redirects automorphism of a 2-spectral triple]] [[!redirects automorphisms of a 2-spectral triple]] [[!redirects automorphisms of 2-spectral triples]] \end{document}