\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ball} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{geometric}{Geometric}\dotfill \pageref*{geometric} \linebreak \noindent\hyperlink{combinatorial}{Combinatorial}\dotfill \pageref*{combinatorial} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{closed_balls}{Closed balls}\dotfill \pageref*{closed_balls} \linebreak \noindent\hyperlink{open_balls}{Open Balls}\dotfill \pageref*{open_balls} \linebreak \noindent\hyperlink{good_covers_by_balls}{Good covers by balls}\dotfill \pageref*{good_covers_by_balls} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{geometric_2}{Geometric}\dotfill \pageref*{geometric_2} \linebreak \noindent\hyperlink{ReferencesStarShapedReasonDiffeomorphicToOpenBall}{Star-shaped regions diffeomorphic to open ball}\dotfill \pageref*{ReferencesStarShapedReasonDiffeomorphicToOpenBall} \linebreak \noindent\hyperlink{combinatorial_2}{Combinatorial}\dotfill \pageref*{combinatorial_2} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{geometric}{}\subsubsection*{{Geometric}}\label{geometric} For $n \in \mathbb{N}$ a [[natural number]], the $n$-[[dimension|dimensional]] \textbf{ball} or \textbf{$n$-disk} in $\mathbb{R}^n$ is the [[topological space]] \begin{displaymath} D^n := \{ \vec x \in \mathbb{R}^n | \sum_{i} (x^i)^2 \leq 1\} \subset \mathbb{R}^n \end{displaymath} equipped with the [[induced topology]] as a subspace of the [[Cartesian space]] $\mathbb{R}^n$. Its [[interior]] is the \textbf{open $n$-ball} \begin{displaymath} \mathbb{B}^n := \{ \vec x \in \mathbb{R}^n | \sum_{i} (x^i)^2 \lt 1 \} \subset \mathbb{R}^n \,. \end{displaymath} Its [[boundary]] is the $(n-1)$-[[sphere]]. More generally, for $(X,d)$ a [[metric space]] then an open ball in $X$ is a subset of the form \begin{displaymath} B(x,r) \coloneqq \{x \in X \;|\; d(x,y) \lt r \} \end{displaymath} for $x \in X$ and $r \in (0,\infty) \subset \mathbb{R}$. (The collection of all open balls in $X$ form the [[basis of a topology|basis]] of the [[metric topology]] on $X$.) \hypertarget{combinatorial}{}\subsubsection*{{Combinatorial}}\label{combinatorial} There are also combinatorial notions of \emph{disks}. For instance that due to (\hyperlink{Joyal}{Joyal}), as entering the definition of the [[Theta-category]]. See for instance (\hyperlink{MakkaiZawadowski}{Makkai-Zawadowski}). \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{closed_balls}{}\subsubsection*{{Closed balls}}\label{closed_balls} A simple result on the \emph{homeomorphism} type of \emph{closed} balls is the following: \begin{theorem} \label{}\hypertarget{}{} A [[compact space|compact]] [[convex subset|convex]] [[subset]] $D$ in $\mathbb{R}^n$ with [[nonempty set|nonempty]] [[interior]] is [[homeomorphic]] to $D^n$. \end{theorem} \begin{proof} Without loss of generality we may suppose the origin is an interior point of $D$. We claim that the map $\phi: v \mapsto v/{\|v\|}$ maps the boundary $\partial D$ homeomorphically onto $S^{n-1}$. By convexity, $D$ is homeomorphic to the cone on $\partial D$, and therefore to the cone on $S^{n-1}$ which is $D^n$. The claim reduces to the following three steps. \begin{enumerate}% \item The restricted map $\phi: \partial D \to S^{n-1}$ is continuous. \item It's surjective: $D$ contains a ball $B = B_{\varepsilon}(0)$ in its interior, and for each $x \in B$, the positive ray through $x$ intersects $D$ in a bounded half-open line segment. For the extreme point $v$ on this line segment, $\phi(v) = \phi(x)$. Thus every unit vector $u \in S^{n-1}$ is of the form $\phi(v)$ for some extreme point $v \in D$, and such extreme points lie in $\partial D$. \item It's injective: for this we need to show that if $v, w \in \partial D$ are distinct points, then neither is a positive multiple of the other. Supposing otherwise, we have $w = t v$ for $t \gt 1$, say. Let $B$ be a ball inside $D$ containing $0$; then the convex hull of $\{w\} \cup B$ is contained in $D$ and contains $v$ as an interior point, contradiction. \end{enumerate} So the unit vector map, being a continuous bijection $\partial D \to S^{n-1}$ between [[compact Hausdorff space]]s, is a homeomorphism. \end{proof} \begin{cor} \label{}\hypertarget{}{} Any compact convex set $D$ of $\mathbb{R}^n$ is homeomorphic to a disk. \end{cor} \begin{proof} $D$ has nonempty interior relative to its affine span which is some $k$-plane, and then $D$ is homeomorphic to $D^k$ by the theorem. \end{proof} \hypertarget{open_balls}{}\subsubsection*{{Open Balls}}\label{open_balls} Open balls are a little less rigid than closed balls, in that one can more easily manipulate them within the \emph{smooth} category: \begin{lemma} \label{}\hypertarget{}{} The open $n$-ball is [[homeomorphic]] and even [[diffeomorphic]] to the [[Cartesian space]] $\mathbb{R}^n$ \begin{displaymath} \mathbb{B}^n \simeq \mathbb{R}^n \,. \end{displaymath} \end{lemma} \begin{proof} For instance, the smooth map \begin{displaymath} x\mapsto \frac{x}{\sqrt{1+|x|^2}} : \mathbb{R}^n \to \mathbb{B}^n \end{displaymath} has smooth inverse \begin{displaymath} y\mapsto \frac{y}{\sqrt{1-|y|^2}} : \mathbb{B}^n \to \mathbb{R}^n. \end{displaymath} \end{proof} This probe from ${\mathbb{R}}^n$ witnesses the property that the open $n$-ball is a ([[smooth manifold|smooth]]) [[manifold]]. Hence, each (smooth) $n$-dimensional manifold is locally isomorphic to both ${\mathbb{R}}^n$ and $\mathbb{B}^n$. From general existence results about [[smooth structure]]s on [[Cartesian space]]s we have that \begin{theorem} \label{}\hypertarget{}{} In [[dimension]] $d \in \mathbb{N}$ for $d \neq 4$ we have: every open subset of $\mathbb{R}^d$ which is [[homeomorphic]] to $\mathbb{B}^d$ is also [[diffeomorphic]] to it. \end{theorem} See the first page of (\hyperlink{Ozols}{Ozols}) for a list of references. \begin{remark} \label{}\hypertarget{}{} In dimension 4 the analog statement fails due to the existence of [[exotic smooth structure]]s on $\mathbb{R}^4$. See \hyperlink{DeMFreed}{De Michelis-Freedman}. \end{remark} \begin{theorem} \label{StarShapedOpenDiffeomorphicToOpenBall}\hypertarget{StarShapedOpenDiffeomorphicToOpenBall}{} \textbf{(star-shaped domains are diffeomorphic to open balls)} Let $C \subset \mathbb{R}^n$ be a [[star-shaped]] [[open subset]] of a [[Cartesian space]]. Then $C$ is [[diffeomorphic]] to $\mathbb{R}^n$. \end{theorem} \begin{remark} \label{LiteratureOnStarShapedOpenDiffeoToOpenBall}\hypertarget{LiteratureOnStarShapedOpenDiffeoToOpenBall}{} Theorem \ref{StarShapedOpenDiffeomorphicToOpenBall} is a [[folk theorem]], but explicit \textbf{proofs} in the literature are hard to find. See the discussion at \hyperlink{References}{References}. An explicit proof has been written out by Stefan Born, and this appears as the proof of \href{http://www.math.tu-berlin.de/~ferus/ANA/Ana3.pdf#page=154}{theorem 237} in (\hyperlink{Ferus07}{Ferus 07}). A simplr proof is given in \hyperlink{GonnordTosel98}{Gonnord-Tosel 98} reproduced \href{http://mathoverflow.net/a/212595/381}{here}. \end{remark} Here is another proof: \begin{proof} Suppose $T$ is a star-shaped open subset of ${\mathbb {R}}^n$ centered at the origin. Theorem 2.29 in \hyperlink{Lee}{Lee} proves that there is a function $f$ on ${\mathbb{R}}^n$ such that $f\gt 0$ on $T$ and $f$ vanishes on the complement of $T$. By applying [[bump functions]] we can assume that $f\le 1$ everywhere and $f=1$ in an open $\epsilon$-neighborhood of the origin; by rescaling the ambient space we can assume $\epsilon=2$. The smooth vector field $V\colon x\mapsto f(x)\cdot x/{\|x\|}$ is defined on the complement of the origin in $T$. Multiply $V$ by a smooth bump function $0\le b\le 1$ such that $b=1$ for ${\|x\|} \gt 1/2$ and $b=0$ in a neighborhood of 0. The new vector field $V$ extends smoothly to the origin and defines a smooth global flow $F\colon \mathbb{R} \times T\to T$. (The parameter of the flow is all of $\mathbb{R}$ and not just some interval $(-\infty,A)$ because the norm of $V$ is bounded by 1.) Observe that for $1/2\lt {\|x\|} \lt 2$ the vector field $V$ equals $x\mapsto x/{\|x\|}$. Also, all flow lines of $V$ are radial rays. Now define the flow map $p\colon{\mathbb{R}}^n_{\gt 1/2}\to T_{\gt 1/2}$ as $x\mapsto F({\|x\|}-1, \frac{x}{{\|x\|}})$ for ${\|x\|} \gt 1/2$. (The subscript $\gt 1/2$ removes the closed ball of radius $1/2$.) The flow map is the composition of two diffeomorphisms, \begin{displaymath} {\mathbb{R}}^n_{\gt 1/2}\to(-1/2,\infty)\times S^{n-1} \to T_{\gt 1/2}, \end{displaymath} hence itself is a diffeomorphism. (Note particularly that the latter map is surjective. In detail: a flow line is a smooth map of the form $L: (A,B) \to T$, where $A$ and $B$ can be finite or infinite. If $B$ is finite and the limit of $L(t)$ as $t \to B$ exists, then the vector field $V$ vanishes at $B$. In our case $V$ can only vanish at the boundary of $T$, which is precisely what we want for surjectivity.) Finally, define the desired diffeomorphism $d\colon{\mathbb{R}}^n\to T$ as the gluing of the identity map for ${\|x\|} \lt 2$ and as $p$ for ${\|x\|}\gt 1/2$. The map $g$ is smooth because for $1/2\lt {\|x\|} \lt 2$ both definitions give the same value. \end{proof} \begin{example} \label{}\hypertarget{}{} Let $I(\Delta^n) \subset \mathbb{R}^n$ be the [[interior]] of the standard $n$-[[simplex]]. Then there is a diffeomorphism to $\mathbb{B}^n$ defined as follows: Parameterize the $n$-simplex as \begin{displaymath} I(\Delta^n) = \left\{ (x^1, \cdots, x^n) \in \mathbb{R} | (\forall i : x^i \gt 0)\; and \; ( \sum_{i=1}^n x^i \lt 1) \right\} \,. \end{displaymath} Then define the map $f : I(\Delta^n) \to \mathbb{R}^n$ by \begin{displaymath} (x^1, \ldots, x^n) \mapsto (\log(\frac{x^1}{1 - x^1 - \ldots -x^n}), \ldots, \log(\frac{x^n}{1 - x^1 - \ldots - x^n})) \,. \end{displaymath} \end{example} (Thanks to [[Todd Trimble]].) One way to think about it is that $I(\Delta^n)$ is the positive orthant of an open $n$-ball in $l^1$ norm, so that in the opposite direction we have a chain of invertible maps \begin{displaymath} \itexarray{ \mathbb{R}^n & \stackrel{\exp^n}{\to} & \mathbb{R}_+^n & \to & I(\Delta^n) \\ & & \vec{x} & \mapsto & \vec{x}/(1 + {\|\vec{x}\|}_1) } \end{displaymath} which we simply invert to get the map $f$ above. \hypertarget{good_covers_by_balls}{}\subsubsection*{{Good covers by balls}}\label{good_covers_by_balls} One central application of balls is as building blocks for [[covering]]s. See [[good open cover]] for some statements. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[unit ball]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{geometric_2}{}\subsubsection*{{Geometric}}\label{geometric_2} \begin{itemize}% \item V. Ozols, \emph{Largest normal neighbourhoods} , Proceedings of the American Mathematical Society Vol. 61, No. 1 (Nov., 1976), pp. 99-101 (\href{http://www.jstor.org/stable/2041672}{jstor}) \end{itemize} That an open subset $U \subseteq \mathbb{R}^4$ homeomorphic to $\mathbb{R}^4$ equipped with the smooth structure inherited as an open submanifold of $\mathbb{R}^4$ might nevertheless be non-diffeomorphic to $\mathbb{R}^4$, see \begin{itemize}% \item De Michelis, Stefano; Freedman, Michael H. (1992) ``Uncountably many exotic $\mathbb{R}^4$`s in standard 4-space'', J. Diff. Geom. 35, pp. 219-254. \end{itemize} \hypertarget{ReferencesStarShapedReasonDiffeomorphicToOpenBall}{}\subsubsection*{{Star-shaped regions diffeomorphic to open ball}}\label{ReferencesStarShapedReasonDiffeomorphicToOpenBall} The proof that open star-shaped regions are diffeomorphic to a ball appears as \href{http://www.math.tu-berlin.de/~ferus/ANA/Ana3.pdf#page=154}{theorem 237} in \begin{itemize}% \item [[Dirk Ferus]], \emph{Analysis III} (2007) (\href{http://www.math.tu-berlin.de/~ferus/ANA/Ana3.pdf}{pdf}) \end{itemize} It is a lengthy proof, due to Stefan Born. A simpler version of the proof apparently appears on page 60 of \begin{itemize}% \item St\'e{}phane Gonnord, Nicolas Tosel, \emph{Calcul Diff\'e{}rentiel}, ellipses (1998) \end{itemize} and is reproduced in \begin{itemize}% \item MO \href{http://mathoverflow.net/a/212595/381}{here} \end{itemize} Apparently this proof is little known. For instance in a remark below lemma 10.5.5 of \begin{itemize}% \item Lawrence Conlon, \emph{Differentiable manifolds}, Birkh\"a{}user (last edition 2008) \end{itemize} it says: \begin{quote}% It seems that open star shaped sets $U \subset M$ are always diffeomorphic to $\mathbb{R}^n$, but this is extremely difficult to prove. \end{quote} And in \begin{itemize}% \item Jeffrey Lee, \emph{Manifolds and differential geometry} (2009) \end{itemize} one finds the statement: \begin{quote}% Actually, the assertion that an open geodesically convex set in a Riemannian manifold is diffeomorphic to $\mathbb{R}^n$ is common in literature, but it is a more subtle issue than it may seem, and references to a complete proof are hard to find (but see Grom). \end{quote} Here ``Grom'' refers to \begin{itemize}% \item [[Mikhail Gromov]], \emph{Convex sets and K\"a{}hler manifolds}, Advances in differential geometry and topology. F. Tricerri ed., World Sci., Singapore, (1990), 1-38. (\href{http://www.ihes.fr/~gromov/PDF/%5B68%5D.pdf}{pdf}) \end{itemize} where the relevant statement is 1.4.C1 on page 8. Note however that the diffeomorphism considered there is only of $C^1$ class, not $C^\infty$, so this is not a proof either. For a discussion of diffeomorphisms between geodesically convex regions and open balls see at \emph{[[good open cover]]}. See also the Math Overflow discussion \href{http://mathoverflow.net/questions/41853/explicit-diffeomorphim-between-open-simplex-and-open-ball}{here}. \hypertarget{combinatorial_2}{}\subsubsection*{{Combinatorial}}\label{combinatorial_2} \begin{itemize}% \item [[Andre Joyal]], \emph{Disks, duality and Theta-categories} ([[JoyalThetaCategories.pdf:file]]) \item [[Mihaly Makkai]], Marek Zawadowski, \emph{Duality for Simple $\omega$-Categories and Disks} (\href{http://www.emis.de/journals/TAC/volumes/8/n7/8-07abs.html}{TAC}) \end{itemize} [[!redirects ball]] [[!redirects balls]] [[!redirects balls]] [[!redirects n-ball]] [[!redirects n-balls]] [[!redirects open ball]] [[!redirects open balls]] [[!redirects open balll]] [[!redirects open n-ball]] [[!redirects open n-balls]] [[!redirects closed ball]] [[!redirects closed balls]] [[!redirects closed n-ball]] [[!redirects closed n-balls]] [[!redirects disk]] [[!redirects disks]] [[!redirects disc]] [[!redirects discs]] [[!redirects open disk]] [[!redirects open disks]] [[!redirects open disc]] [[!redirects open discs]] [[!redirects n-disk]] [[!redirects n-disks]] [[!redirects n-disc]] [[!redirects n-discs]] [[!redirects open n-disk]] [[!redirects open n-disks]] [[!redirects open n-disc]] [[!redirects open n-discs]] \end{document}