\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{basic complex line bundle on the 2-sphere} [[!redirects basic line bundle on the 2-sphere]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{basic line bundle on the 2-sphere} is the [[complex line bundle]] on the [[2-sphere]] whose [[first Chern class]] is a generator of $H^2(S^2, \mathbb{Z})$. This is the [[pullback bundle]] of the map $S^2 \to B U(1) \simeq B^2 \mathbb{Z}$ to the [[classifying space]]/[[Eilenberg-MacLane space]] which itself represents a generator of the [[homotopy group]] $\pi_2(S^2) \simeq \mathbb{Z}$. Beware that this basic line bundle is sometimes called the ``canonical line bundle on the 2-sphere'', but it is \emph{not} [[isomorphism|isomorphic]] to what in complex geometry is called the [[canonical bundle]] of the 2-sphere regarded as a [[Riemann surface]]. Instead it is ``one half'' of the latter, its [[theta characteristic]]. See also at \emph{[[geometric quantization of the 2-sphere]]}. The basic line bundle is the canonically [[associated bundle]] to basic [[circle principal bundle]]: the [[complex Hopf fibration]]. Another name for it is the [[tautological line bundle]] for the complex [[projective space|projective line]] $\mathbb{P}^1(\mathbb{C})$ (the [[Riemann sphere]]), namely the map $\mathbb{C}^2 \setminus \{(0, 0)\} \to \mathbb{P}^1(\mathbb{C})$ mapping $(x, y)$ to $[x; y]$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The [[classifying space]] for [[circle principal bundles]], or equivalently (via forming [[associated bundles]]) that of [[complex line bundles]] is $B U(1)$, which as a [[Grassmannian]] is the infinite [[complex projective space]] $\mathbb{C}P^\infty$. The [[homotopy type]] of this space is that of the [[Eilenberg-MacLane space]] $K(\mathbb{Z},2)$. This means that $K(\mathbb{Z},2)$ is in particular [[path-connected topological space|path-connected]] and has second [[homotopy group]] the [[integers]]: $\pi_2(K(\mathbb{Z},2)) \simeq \mathbb{Z}$. It being the [[classifying space]] for complex line bundles means that \begin{displaymath} \left\{ \itexarray{ \text{isomorphism classes of} \\ \text{complex line bundles} \\ \text{on}\,\, S^2 } \right\} \;\simeq\; \left\{ \itexarray{ \text{continuous functions} \\ S^2 \longrightarrow K(\mathbb{Z},2) \\ \text{up to homotopy} } \right\} \;\simeq\; \pi_2(K(\mathbb{Z},2)) \;\simeq\; \mathbb{Z} \,. \end{displaymath} The ([[isomorphism class]]) of the complex line bundle which corresponds to $+1 \in \mathbb{Z}$ under this sequence of [[isomorphisms]] is called the \emph{basic complex line bundle on the 2-sphere}. Hence the basic complex line bundle on the 2-sphere is [[generalized the|the]] [[pullback bundle]] of the [[universal complex line bundle]] on $B U(1)$ along the map $S^2 \to B U(1)$ which represents the element $1 \in \mathbb{Z} \simeq \pi_2(B U(1))$. If the [[classifying space]] $B U(1)$ is represented by the infintie [[complex projective space]] $\mathbb{C}P^\infty$ with its canonical [[CW-complex]] structure (\href{complex+projective+space#CellComplexStructureOnComplexProjectiveSpace}{this prop.}), then this map is represented by the canonical cell incusion $S^2 \hookrightarrow\mathbb{C}P^\infty$. Notice that there is a non-trivial [[automorphism]] of $\mathbb{Z}$ as an [[abelian group]] given by $n \mapsto -n$. This means that there is an ambiguity in the definition of the basic line bundle on the 2-sphere. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{lemma} \label{ClutchingConstructionOfBasicLineBundle}\hypertarget{ClutchingConstructionOfBasicLineBundle}{} \textbf{([[clutching construction]] of the basic line bundle)} Under the [[clutching construction]] of [[vector bundles]] on the [[2-sphere]], the basic complex line bundle on the 2-sphere is given by the [[transition function]] \begin{displaymath} \mathbb{C} \supset \, S^1 \longrightarrow GL(1,\mathbb{C}) \, \subset \mathbb{C} \end{displaymath} from the [[Euclidean space|Euclidean]] [[circle]] $S^1 \subset \mathbb{R}^2 \simeq \mathbb{C}$ to the complex [[general linear group]] in 1-dimension, which is $GL(1,\mathbb{C}) \simeq \mathbb{C} \setminus \{0\}$ given simply by \begin{displaymath} z \mapsto z \,, \end{displaymath} Alternatively, due to the sign ambiguity in the definition of the basic bundle, its clutching transition function is given by \begin{displaymath} z \mapsto - z \,. \end{displaymath} \end{lemma} \begin{proof} Under the [[clutching construction]] the [[isomorphism class]] of a complex line bundle corresponds to the [[homotopy class]] of its clutching transition function \begin{displaymath} S^1 \to GL(1, \mathbb{C}) \simeq \mathbb{C} \setminus \{0\} \end{displaymath} hence to an element of the [[fundamental group]] $\pi_1(\mathbb{C} \setminus \{0\}) \simeq \mathbb{Z}$. Hence by definition, the basic bundle has clutching transition function corresponding to $\pm 1 \in \mathbb{Z} \simeq [S^1, GL(1,\mathbb{Z})]$ and this element is represented by the function $z \mapsto \pm z$. \end{proof} \begin{prop} \label{TensorRelationForBasicLineBundleOn2Sphere}\hypertarget{TensorRelationForBasicLineBundleOn2Sphere}{} \textbf{(fundamental tensor/sum relation of the basic complex line bundle)} Under [[direct sum of vector bundles]] $\oplus_{S^2}$ and [[tensor product of vector bundles]] $\otimes_{S^2}$, the basic line bundle on the 2-sphere $H \to S^2$ satisfies the following relation \begin{displaymath} H \oplus_{S^2} H \;\simeq\; \left( H \otimes_{S^2} H \right) \oplus_{S^2} 1_{S^2} \end{displaymath} (where $1_{S^2}$ denotes the [[trivial vector bundle]] [[complex line bundle]] on the 2-sphere). \end{prop} (e.g (\hyperlink{Hatcher}{Hatcher, Example 1.13})) \begin{proof} Via the [[clutching construction]] there is a single [[transition function]] of the form \begin{displaymath} S^1 \longrightarrow GL(n,\mathbb{C}) \end{displaymath} that characterizes all the bundles involved. With $S^1 \hookrightarrow \mathbb{C}$ identified with the [[topological subspace]] of [[complex numbers]] of unit [[absolute value]], the standard choice for these functions is \begin{itemize}% \item for the [[trivial vector bundle|trivial]] [[line bundle]] $1_{S^2}$ we may choose $f_1 \colon z \mapsto \left( 1 \right)$; \item for the basic line bundle we may choose (by lemma \ref{ClutchingConstructionOfBasicLineBundle}) $f_H \colon z \mapsto \left( z\right)$ \end{itemize} This yields \begin{itemize}% \item for $H \otimes H \oplus 1_{S^2}$ the clutching function $z \mapsto \left( \itexarray{ z^2 & 0 \\ 0 & 1 }\right)$ \item for $H \oplus H$ the clutching function $z \mapsto \left( \itexarray{ z & 0 \\ 0 & z } \right)$. \end{itemize} Since the complex [[general linear group]] $Gl(n,\mathbb{C})$ is [[path-connected topological space|path-connected]] (by \href{general+linear+group#ConnectednessOfGeneralLinearGroup}{this prop.}), there exists a [[continuous function]] \begin{displaymath} \gamma \colon [0,1] \longrightarrow GL(2,\mathbb{C}) \end{displaymath} connecting the identity matrix on $\mathbb{C}^2$ with the one that swaps the two entries, i.e. with $\gamma(0) = \left( \itexarray{ 1 & 0 \\ 0 & 1 } \right)$ and $\gamma(1) = \left( \itexarray{ 0 & 1 \\ 1 & 0 } \right)$ Therefore the function \begin{displaymath} \itexarray{ S^1 \times [0,1] &\overset{}{\longrightarrow}& GL(2,\mathbb{C}) \\ (z,t) &\overset{\phantom{AA}}{\longrightarrow}& f_{H \oplus 1}(z) \cdot \gamma(t) \cdot f_{1 \oplus H}(z) \cdot \gamma(t) } \end{displaymath} (with [[matrix multiplication]] on the right) is a [[left homotopy]] from $f_{H \oplus H}$ to $f_{H \otimes H \oplus 1}$. \end{proof} \begin{remark} \label{}\hypertarget{}{} \textbf{([[fundamental product theorem in topological K-theory]])} Under the map \begin{displaymath} Vect(S^2)_{/\sim} \longrightarrow K(X) \end{displaymath} that sends [[complex vector bundles]] to their class in the [[topological K-theory]] ring $K(X)$, the fundamental tensor/sum relation of prop. \ref{TensorRelationForBasicLineBundleOn2Sphere} says that the K-theory class $H$ of the basic line bundle in $K(X)$ satisfies the relation \begin{displaymath} \begin{aligned} (H - 1)^2 & = H^2 + 1 - \underset{= H^2 + 1}{\underbrace{2 H}} \\ = & 0 \end{aligned} \end{displaymath} in $K(X)$. (Notice that $H-1$ is the image of $[H]$ in the [[reduced K-theory]] $\tilde K(X)$ of $S^2$ under the splitting $K(X) \simeq \tilde K(X) \oplus \mathbb{Z}$ (by \href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}).) It follows that there is a [[ring homomorphism]] of the form \begin{displaymath} \itexarray{ \mathbb{Z}[h]/\left( (h-1)^2 \right) &\overset{}{\longrightarrow}& K(S^2) \\ h &\overset{\phantom{AAA}}{\mapsto}& H } \end{displaymath} from the [[polynomial ring]] in one abstract generator, [[quotient ring|quotiented]] by this relation, to the [[topological K-theory]] ring. It turns out that this homomorphism is in fact an [[isomorphism]], hence that the relation $(H-1)^2 = 0$ from prop. \ref{TensorRelationForBasicLineBundleOn2Sphere} is the \emph{only} relation satisfied by the basic complex line bundle in topological K-theory. More generally, for $X$ a [[topological space]], then there is a composite ring homomorphism \begin{displaymath} \itexarray{ K(X) \otimes \mathbb{Z}[h]/((h-1)^2) & \longrightarrow & K(X) \times K(S^2) & \longrightarrow & K(X \times S^2) \\ (E, h) &\overset{\phantom{AAA} }{\mapsto}& (E,H) &\overset{\phantom{AAA}}{\mapsto}& (\pi_{X}^\ast E) \cdot (\pi_{S^2}^\ast H) } \end{displaymath} to the topological K-theory ring of the [[product topological space]] $X \times S^^2$, where the second map is the [[external tensor product]] of vector bundles. This composite is an [[isomorphism]] if $X$ is a [[compact Hausdorff space]] (for $X = \ast$ the [[point space]] this reduces to the previous statement). This is called the \emph{[[fundamental product theorem in topological K-theory]]}. It is the main ingredient in the [[proof]] of [[Bott periodicity]] in complex topological K-theory. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[universal complex line bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Allen Hatcher]], \emph{Vector bundles and K-theory} (\href{https://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web}) \item [[Klaus Wirthmüller]], \emph{Vector bundles and K-theory}, 2012 (\href{ftp://www.mathematik.uni-kl.de/pub/scripts/wirthm/Top/vbkt_skript.pdf}{pdf}) \end{itemize} [[!redirects basic line bundles on the 2-sphere]] \end{document}