\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{basic localizer} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{basic_localizers}{}\section*{{Basic localizers}}\label{basic_localizers} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{asphericity_and_local_equivalences}{Asphericity and local equivalences}\dotfill \pageref*{asphericity_and_local_equivalences} \linebreak \noindent\hyperlink{selfduality}{Self-duality}\dotfill \pageref*{selfduality} \linebreak \noindent\hyperlink{cisinskis_theorem}{Cisinski's theorem}\dotfill \pageref*{cisinskis_theorem} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} By a \emph{basic localizer} one means a [[localizer]] on the category [[Cat]] of [[categories]], hence a choice of a [[class]] of [[functors]] to be called the \emph{[[weak equivalences]]}, subject to some conditions. These conditions ensure in particular that a basic localizer always contains the weak equivalences of the [[Thomason model structure]] on [[Cat]] (see \hyperlink{Maltsiniotis11}{Maltsiniotis 11, 1.2.1}), the [[localization]] at which is equivalent to the standard [[homotopy category]]. On the other hand, the standard [[equivalences of categories]], which are the weak equivalences in the [[canonical model structure]] on [[Cat]], do not form a basic localizer. Hence basic localizers are a tool for [[homotopy theory]] modeled on [[category theory]]. In fact, their introduction by [[Grothendieck]] was motivated from the study of [[test categories]] (see remark \ref{CitationOnTestCategories} below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The definition is due to [[Grothendieck]]: \begin{defn} \label{BasicLocalizer}\hypertarget{BasicLocalizer}{} A \textbf{basic localizer} is a [[class]] $W$ of [[morphisms]] in [[Cat]] such that \begin{enumerate}% \item $W$ contains all [[identities]], satisfies the [[2-out-of-3 property]] and is closed under [[retracts]] (in the literature this is sometimes called being \emph{weakly saturated}), \item If $A$ has a [[terminal object]], then the functor $A\to 1$ is in $W$, and \item Given a commutative triangle in $Cat$: \begin{displaymath} \itexarray{ A & & \overset{u}{\to} & & B\\ & _v \searrow & & \swarrow_w \\ & & C } \end{displaymath} if each induced functor $v/c \to w/c$ between [[comma categories]] is in $W$, then $u$ is also in $W$. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} The term in French is \textbf{localisateur fondamental}, which is sometimes translated as \textbf{fundamental localizer}. \end{remark} \begin{remark} \label{CitationOnTestCategories}\hypertarget{CitationOnTestCategories}{} In [[Pursuing Stacks]] [[Grothendieck]] wrote about def. \ref{BasicLocalizer} the following: \begin{quote}% These conditions are enough, I quickly checked this night, in order to validify all results developed so far on [[test categories]], [[weak test categories]], [[strict test categories]], weak test functors and test functors (with values in $(Cat)$) (of notably the review in par. 44, page 79--88), provided in the case of test functors we restrict to the case of loc. cit. when each of the categories $i(a)$ has a final object. All this I believe is justification enough for the definition above. \end{quote} \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The class of \emph{all} functors between small categories is, of course, the maximal basic localizer. \item The class of functors inducing an [[isomorphism]] on [[connected components]] is a basic localizer. \item The class of functors whose [[nerve]] is a [[weak homotopy equivalence]] is a basic localizer. (These are the [[weak equivalences]] in the [[Thomason model structure]].) \item For any [[derivator]] $D$, the class of $D$-equivalences is a basic localizer. This includes all the previous examples. \item The class of [[equivalences of categories]] is \emph{not} a basic localizer (it fails the second condition). (These are the weak equivalences of the [[canonical model structure]].) \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{asphericity_and_local_equivalences}{}\subsubsection*{{Asphericity and local equivalences}}\label{asphericity_and_local_equivalences} If $W$ is a basic localizer, we define the following related classes. We sometimes refer to functors in $W$ as \emph{weak equivalences}. \begin{itemize}% \item A category $A$ is \textbf{($W$-)aspherical} if $A\to 1$ is in $W$. Thus the second axiom says exactly that any category with a terminal object is aspherical. \item A functor $u\colon A\to B$ is \textbf{($W$-)aspherical} if for all $b\in B$, the comma category $u/b$ is aspherical. \item When the hypotheses of the third axiom are satisfied, we say that $u$ is a \textbf{local weak equivalence over $C$}. Thus the third axiom says exactly that every local weak equivalence is a weak equivalence. \end{itemize} \begin{example} \label{}\hypertarget{}{} If $W = \pi_0$-equivalences, then a category is aspherical iff it is connected, and a functor is aspherical iff it is [[initial functor|initial]]. \end{example} \begin{example} \label{}\hypertarget{}{} If $W =$ nerve equivalences, then a category is aspherical iff its nerve is contractible, and a functor is aspherical iff it is [[homotopy initial functor|homotopy initial]]. \end{example} We observe the following. \begin{itemize}% \item A category $A$ is aspherical iff the functor $A\to 1$ is aspherical, since the only comma category involved in the latter assertion is $A$ itself. \item An aspherical functor is a weak equivalence. For if $u\colon A\to B$ is aspherical, then consider the triangle \begin{displaymath} \itexarray{ A & & \overset{u}{\to} & & B\\ & _u \searrow & & \swarrow \\ & & B } \end{displaymath} The third axiom tells us to consider, for a given $b\in B$, the functor $u/b \to B/b$. But $u/b$ is aspherical by assumption, while $B/b$ is aspherical by the second axiom since it has a terminal object. Thus, by 2-out-of-3, the functor $u/b \to B/b$ is in $W$, and thus by the third axiom $u$ is in $W$. \item If $u$ has a right adjoint, then it is aspherical. For in this case, each category $u/b$ has a terminal object, and thus is aspherical. \item If $I$ denotes the [[interval category]], then for any category $A$ the projection $A\times I\to A$ has a right adjoint, hence is aspherical and thus a weak equivalence. By 2-out-of-3, the two injections $A \rightrightarrows A\times I$ are also weak equivalences, so $A\times I$ is a [[cylinder object]] for $W$. It follows that if we have a natural transformation $f\to g$, then $f$ is in $W$ if and only if $g$ is. Moreover, if $f$ is a ``homotopy equivalence'' in the sense that it has an ``inverse'' $g$ such that $f g$ and $g f$ are connected to identities by arbitrary natural zigzags, then $f$ is a weak equivalence. \item In particular, any left or right adjoint is a weak equivalence. \end{itemize} \hypertarget{selfduality}{}\subsubsection*{{Self-duality}}\label{selfduality} It is a non-obvious fact that the notion of basic localizer is self-dual. \begin{theorem} \label{}\hypertarget{}{} A functor $u : A \to B$ is in a basic localizer $W$ if and only if $u^{op} : A^{op} \to B^{op}$ is in $W$. \end{theorem} \begin{proof} See Proposition 1.2.6 in (\hyperlink{Cisinski04}{Cisinski 04}). \end{proof} \hypertarget{cisinskis_theorem}{}\subsubsection*{{Cisinski's theorem}}\label{cisinskis_theorem} Since the definition consists merely of closure conditions, the intersection of any family of basic localizers is again a basic localizer. It follows that there is a unique \emph{smallest} basic localizer. The following was conjectured by [[Grothendieck]] and proven by [[Denis-Charles Cisinski]]. \begin{theorem} \label{}\hypertarget{}{} The class of functors whose [[nerve]] is a [[weak homotopy equivalence]] is the smallest basic localizer. \end{theorem} \begin{proof} See Th\'e{}or\`e{}me 2.2.11 in (\hyperlink{Cisinski04}{Cisinski 04}). \end{proof} Note that this is a larger class than the class of ``[[homotopy equivalences]]'' considered above. For instance, the category generated by the graph \begin{displaymath} \bullet \leftarrow \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \bullet \leftarrow \bullet \rightarrow \cdots \end{displaymath} has a contractible nerve, but its identity functor is not connected to a constant one by any natural zigzag. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[canonical model structure]], [[Thomason model structure]] on [[Cat]] \item [[Cisinski model structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{[[joyalscatlab:Les préfaisceaux comme type d'homotopie]]}, Ast\'e{}risque, Volume 308, Soc. Math. France (2006), 392 pages (\href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{Le localisateur fondamental minimal} \end{itemize} See also at \emph{[[Cisinski model structure]]}. \begin{itemize}% \item [[Georges Maltsiniotis]], \emph{Homotopical exact squares and derivators} (\href{http://arxiv.org/abs/1101.4144}{arXiv:1101.4144}) \end{itemize} [[!redirects basic localizor]] [[!redirects basic localizors]] [[!redirects basic localizers]] [[!redirects basic localiser]] [[!redirects basic localisers]] [[!redirects fundamental localizer]] [[!redirects fundamental localizers]] [[!redirects fundamental localiser]] [[!redirects fundamental localisers]] [[!redirects localisateur fondamental]] \end{document}