\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bicategory of relations} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{relations}{}\paragraph*{{Relations}}\label{relations} [[!include relations - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{bicategories_of_relations}{}\section*{{Bicategories of relations}}\label{bicategories_of_relations} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_beckchevalley_condition}{The Beck-Chevalley condition}\dotfill \pageref*{the_beckchevalley_condition} \linebreak \noindent\hyperlink{relation_to_allegories}{Relation to allegories}\dotfill \pageref*{relation_to_allegories} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{bicategory of relations} is a [[(1,2)-category]] which behaves like the 2-category of internal [[relations]] in a [[regular category]]. The notion is due to Carboni and Walters. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Note: in this article, the direction of composition is diagrammatic (i.e., ``anti-Leibniz''). A \textbf{bicategory of relations} is a [[cartesian bicategory]] which is [[locally posetal 2-category|locally posetal]] and moreover in which for every object $X$, the [[diagonal morphism|diagonal]] $\Delta\colon X\to X\otimes X$ and [[codiagonal]] $\nabla\colon X\otimes X\to X$ satisfy the [[Frobenius condition]]: \begin{displaymath} \nabla\Delta = (1\otimes \Delta)(\nabla \otimes 1). \end{displaymath} Of course, in the locally posetal case the definition of cartesian bicategory simplifies greatly: it amounts to a symmetric monoidal [[Pos]]-[[enriched category]] for which every object carries a commutative [[comonoid]] structure, for which the structure maps $\Delta_X: X \to X \otimes X$, $\varepsilon_X: X \to 1$ are [[left adjoint]] 1-morphisms, and for which every morphism $R: X \to Y$ is a colax morphism of comonoids in the sense that the following inequalities hold: \begin{displaymath} R \Delta_Y \leq \Delta_{X \otimes X} (R \otimes R), \qquad R \varepsilon_Y \leq \varepsilon_X. \end{displaymath} We remark that such structure is unique when it exists (being a cartesian bicategory is a property of, as opposed to structure on, a bicategory). The [[tensor product]] $\otimes$ behaves like the ordinary product of [[relation]]s. Note this is not a cartesian product in the sense of the usual universal property; nevertheless, it is customary to write it as a product $\times$, and we follow this custom below. It does become a cartesian product if one restricts to the subcategory of left adjoints (called \emph{maps}), which should be thought of as functional relations. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} We record a few consequences of this notion. \begin{prop} \label{}\hypertarget{}{} (Separability condition) $\Delta\nabla = 1$. \end{prop} \begin{proof} In one direction, we have the 2-cell $1 \leq \Delta\nabla$ which is the unit of the adjunction $\Delta \dashv \Delta_* = \nabla$. In the other direction, there is an adjunction $\varepsilon \dashv \varepsilon_*$ between the counit and its dual, and the unit of this adjunction is a 2-cell $1 \leq \varepsilon\varepsilon_*$, from which we derive \begin{displaymath} \Delta\nabla = \Delta\Delta_* \leq \Delta (1 \times \varepsilon)(1 \times \varepsilon_*)\Delta_* = 1 \end{displaymath} where the last equation follows from the equation $\Delta(1 \times \varepsilon) = 1$ and its dual $(1 \times \varepsilon_*)\Delta_* = 1$. \end{proof} \begin{prop} \label{}\hypertarget{}{} (Dual Frobenius condition) $\nabla \Delta = (\Delta \times 1)(1 \times \nabla)$. \end{prop} \begin{proof} The locally full subcategory whose 1-cells are \emph{maps} (= left adjoints) has finite products, in particular a symmetry involution $\sigma$ for which \begin{displaymath} \Delta_X \sigma_{X X} = \Delta_X \end{displaymath} Additionally, the right adjoint $\sigma_{X Y *}$ is the inverse $\sigma_{X Y}^{-1} = \sigma_{Y X}$. Hence the equation above is mated to $\sigma_{X X} \nabla_X = \nabla_X$, and we calculate \begin{displaymath} \itexarray{ \nabla_X \Delta_X & = & \sigma_{X X}\nabla_X \Delta_X \sigma_{X X} \\ & = & \sigma_{X X} (1 \times \Delta_X)(\nabla_X \times 1) \sigma_{X X} \\ & = & (\Delta_X \times 1_X) \sigma_{X \times X, X} \sigma_{X \times X, X} (1_X \times \nabla_X) \\ & = & (\Delta_X \times 1_X) (\sigma_{X X} \times 1) (1 \times \sigma_{X X}) (1 \times \nabla_X) \\ & = & (\Delta_X \times 1_X)(1_X \times \nabla_X) } \end{displaymath} which gives the dual equation. \end{proof} \begin{theorem} \label{}\hypertarget{}{} In a bicategory of relations, each object is dual to itself, making the bicategory a compact closed bicategory. \end{theorem} \begin{proof} Both the unit and counit of the desired adjunction $X \dashv X$ are given by equality predicates: \begin{displaymath} \eta_X = (1 \stackrel{\varepsilon_*}{\to} X \stackrel{\Delta}{\to} X \times X) \qquad \theta_X = (X \times X \stackrel{\nabla}{\to} X \stackrel{\varepsilon}{\to} 1) \end{displaymath} One of the triangular equations follows from the commutative diagram \begin{displaymath} \itexarray{ X & \stackrel{1 \times \varepsilon_*}{\to} & X \times X & \stackrel{1 \times \Delta}{\to} & X \times X \times X \\ & {}_1\searrow & \downarrow \mathrlap{\nabla} & & \downarrow \mathrlap{\nabla \times 1} \\ & & X & \overset{\Delta}{\to} & X \times X \\ & & & {}_{1}\searrow & \downarrow \mathrlap{\varepsilon \times 1} \\ & & & & X } \end{displaymath} where the square expresses a Frobenius equation. The other triangular equation uses the dual Frobenius equation. \end{proof} The compact closure allows us to define the opposite of a relation $R: X \to Y$ as the 1-morphism mate: \begin{displaymath} R^{op} = (Y \stackrel{1_Y \times \eta_X}{\to} Y \times X \times X \stackrel{1_Y \times R \times 1_X}{\to} Y \times Y \times X \stackrel{\theta_Y \times 1_X}{\to} X) \end{displaymath} In this way, a bicategory of relations becomes a [[dagger-compact category|†-compact]] $Pos$-enriched category. Recall (again) that a \textbf{map} in the bicategory of relations is the same as a 1-cell that has a right adjoint. \begin{prop} \label{strict}\hypertarget{strict}{} If $f \colon X \to Y$ is a map, then $f$ is a strict morphism of comonoids. \end{prop} \begin{proof} If $g$ is the right adjoint of $f$, we have $\Delta_X g \leq (g \times g)\Delta_Y$ since $g$, like any morphism, is a lax comonoid morphism. But this 2-cell is mated to a 2-cell $(f \times f)\Delta_X \to \Delta_Y f$, inverse to the 2-cell $\Delta_Y f \to (f \times f)\Delta_X$ that comes for free. So $f$ preserves comultiplication strictly. A similar argument shows $f$ preserves the counit strictly. \end{proof} \begin{prop} \label{}\hypertarget{}{} If $f \colon X \to Y$ is a map, then $f^{op}: Y \to X$ equals the right adjoint $f_\ast$. \end{prop} \begin{proof} The proof is much more perspicuous if we use [[string diagram|string diagrams]]. But the key steps are given in two strings of equalities and inequalities. The first gives a counit for $f \dashv f^{op}$, and the second gives a unit. We have \begin{displaymath} \itexarray{ f f^{op} & \stackrel{0}{=} & f \circ (\varepsilon_Y \times 1)(\nabla_Y\times 1)(1 \times f \times 1)(1 \times \Delta_X)(1 \times \varepsilon_X_\ast) \\ & \stackrel{1}{=} & (\varepsilon_Y \times 1)(\nabla_Y \times 1)(1 \times f \times f)(1 \times \Delta_X)(1 \times \varepsilon_X_\ast) \\ & \stackrel{2}{=} & (\varepsilon_Y \times 1)(\nabla_Y \times 1)(1 \times \Delta_Y)(1 \times f)(1 \times \varepsilon_X_\ast)\\ & \stackrel{3}{\leq} & (\varepsilon_Y \times 1)(\nabla_Y \times 1)(1 \times \Delta_Y)(1 \times \varepsilon_Y_\ast) \\ & \stackrel{4}{=} & (\varepsilon_Y \times 1)\Delta_Y \nabla_Y(1 \times \varepsilon_Y_\ast) \\ & \stackrel{5}{=} & 1_Y } \end{displaymath} where (0) uses the definition of $f^{op}$, (1) uses properties of monoidal categories, (2) uses the fact that $f$ strictly preserves comultiplication, (3) is mated to the fact that $f$ laxly preserves the counit, (4) is a Frobenius condition, and (5) uses comonoid and dual monoid laws. We can also ``almost'' run the same calculation backwards to get the unit: \begin{displaymath} \itexarray{ 1_X & \stackrel{0}{=} & (\varepsilon_X \times 1)\Delta_X \nabla_X(1 \times \varepsilon_X_\ast) \\ & \stackrel{1}{=} & (\varepsilon_X \times 1)(\nabla_X \times 1)(1 \times \Delta_X)(1 \times \varepsilon_X_\ast) \\ & \stackrel{2}{=} & (\varepsilon_Y \times 1)(f \times 1)(\nabla_X\times 1)(1 \times \Delta_X)(1 \times \varepsilon_X_\ast) \\ & \stackrel{3}{\leq} & (\varepsilon_Y \times 1)(\nabla_Y \times 1)(f \times f \times 1)(1 \times \Delta_X)(1 \times \varepsilon_X_\ast) \\ & \stackrel{4}{=} & (\varepsilon_Y \times 1)(\nabla_Y \times 1)(1 \times f \times 1)(1 \times \Delta_X)(1 \times \varepsilon_X_\ast) \circ f \\ & \stackrel{5}{=} & f^{op} f } \end{displaymath} where (0) uses comonoid and dual monoid laws, (1) uses a Frobenius condition, (2) uses the fact that $f$ preserves the counit, (3) is mated to the fact that $f$ laxly preserves comultiplication, (4) uses properties of monoidal categories, and (5) uses the definition of $f^{op}$. \end{proof} In fact, what this proof really proves is a converse of the earlier \hyperlink{strict}{proposition}: \begin{prop} \label{}\hypertarget{}{} If $f$ is a strict comonoid morphism, then $f$ has a right adjoint: $f \dashv f^{op}$. \end{prop} \begin{prop} \label{}\hypertarget{}{} If $f, g: X \to Y$ are maps and $f \leq g$, then $f = g$. Thus, the locally full subcategory whose morphisms are maps is locally discrete (the hom-posets are discrete). \end{prop} \begin{proof} A 2-cell inequality $\alpha: f \leq g$ is mated to a inequality $\alpha_*: g_* \leq f_*$. On the other hand, whiskering $1_Y \times \alpha \times 1_X$ with $1_Y \times \eta_X$ and $\theta_Y \times 1_X$, as in the construction of opposites above, gives $\alpha^{op}: f^{op} \leq g^{op}$. Since $f^{op} = f_*$ and $g^{op} = g_*$, we obtain $f^{op} = g^{op}$, and because $f^{op op} = f$, we obtain $f = g$. \end{proof} \hypertarget{the_beckchevalley_condition}{}\subsection*{{The Beck-Chevalley condition}}\label{the_beckchevalley_condition} Bicategories of relations $\mathbf{B}$ satisfy a Beck-Chevalley condition, as follows. Let $Prod(B_0)$ denote the free category with finite products generated by the set of objects of $\mathbf{B}$. According to the results at [[free cartesian category]], $Prod(B_0)$ is finitely complete. Since $Map(\mathbf{B})$ has finite products, there is a product-preserving functor $\pi: Prod(B_0) \to \Map(\mathbf{B})$ which is the identity on objects. Again, according to the results of [[free cartesian category]], we have the following result. \begin{lemma} \label{}\hypertarget{}{} If a diagram in $Prod(B_0)$ is a pullback square, then application of $\pi$ to that diagram is a pullback square in $Map(\mathbf{B})$. \end{lemma} Let us call pullback squares of this form in $Map(\mathbf{B})$ \emph{product-based} pullback squares. \begin{prop} \label{}\hypertarget{}{} Given a product-based pullback square \begin{displaymath} \itexarray{ W & \stackrel{h}{\to} & X \\ k \downarrow & & \downarrow f \\ Y & \underset{g}{\to} & Z } \end{displaymath} in $Map(\mathbf{B})$, the Beck-Chevalley condition holds: $h_* k = f g_*$. \end{prop} See Brady-Trimble for further details. The critical case to consider is the pullback square \begin{displaymath} \itexarray{ X & \overset{\Delta}{\to} & X \times X \\ \mathllap{\Delta} \downarrow & & \downarrow \mathrlap{\Delta \times 1} \\ X \times X & \underset{1 \times \Delta}{\to} & X \times X \times X } \end{displaymath} where the Beck-Chevalley condition is exactly the Frobenius condition. One way of interpreting this result is by viewing $\mathbf{B}$ as a hyperdoctrine or monoidal fibration over $Prod(B_0)$, where the fiber over an object $B$ is the local hom-poset $\hom(B, 1)$. Each $f: A \to B$ in the base induces a pullback functor, by precomposing $R: B \to 1$ with $\pi(f): A \to B$ in $Map(\mathbf{B})$. Existential quantification is interpreted by precomposing with right adjoints $\pi(f)_*$. The Beck-Chevalley condition exerts compatibility between quantification and pullback/substitution functors. \hypertarget{relation_to_allegories}{}\subsection*{{Relation to allegories}}\label{relation_to_allegories} Any bicategory of relations is an [[allegory]]. Recall that an allegory is a $Pos$-enriched $\dagger$-category whose local homs are meet-semilattices, satisfying Freyd's modular law: \begin{displaymath} R S \cap T \leq (R \cap T S^{op})S \end{displaymath} A proof of the modular law is given in the blog post by R.F.C. (``Bob'') Walters referenced below. In fact, we may prove a little more: \begin{theorem} \label{}\hypertarget{}{} The notion of bicategory of relations is equivalent to the notion of unitary pretabular allegory. \end{theorem} \begin{proof} A bicategory of relations has a unit $1$ in the sense of allegories: \begin{itemize}% \item $1$ is a partial unit: we have $\varepsilon_1 = id_1: 1 \to 1$, and for any $R: 1 \to 1$ we have $R = R\varepsilon_1 \leq \varepsilon_1 = id_1$. \item Any object $X$ is the source of a map $\varepsilon_X: X \to 1$, which being a map is entire. Thus $1$ is a unit. \end{itemize} A bicategory of relations is also pretabular, for the maximal element in $\hom(X, Y)$ is tabulated as $(\pi_X)_* \pi_Y$, where $\pi_X$, $\pi_Y$ are the product projections for $X \times Y$. In the other direction, suppose $\mathbf{A}$ is a unitary pretabular allegory. There is a faithful embedding, which preserves the unit, of $\mathbf{A}$ into its coreflexive splitting, which is unitary and tabular, and hence equivalent to $Rel$ of the regular category $Map(\mathbf{A})$. By the proposition below, then, $\mathbf{A}$ is a full sub-2-category of a bicategory of relations. Because the product of two Frobenius objects is again Frobenius, it suffices to show that $\mathbf{A}$ is closed under products in its coreflexive splitting. The inclusion of $\mathbf{A}$ into the latter preserves the unit and the property of being a map, and hence preserves top elements of hom sets, while any allegory functor must preserve tabulations. So the tabulation $(\pi^{X Y}_X, \pi^{X Y}_Y)$ of $\top_{X Y}$ in $\mathbf{A}$ is a tabulation of $\top_{1_X 1_Y}$ in the coreflexive splitting, and hence $1_{X \times Y} \cong 1_X \times 1_Y$. \end{proof} \begin{prop} \label{}\hypertarget{}{} If $C$ is a [[regular category]], then the bicategory $Rel C$ of [[Rel|relations]] in $C$ is a bicategory of relations. \end{prop} \begin{proof} By theorem 1.6 of Carboni--Walters, $\mathbf{A}$ is a [[Cartesian bicategory]] if: \begin{itemize}% \item $Map(\mathbf{A})$ has finite products. \item $\mathbf{A}$ has local finite products, and $id_1$ is the top element of $\mathbf{A}(1,1)$. \item The tensor product defined as \begin{displaymath} R \otimes S = (p R p_*) \cap (p' S p'_*) \end{displaymath} is functorial, where $p$ and $p'$ are the appropriate product projections. \end{itemize} The first two are obvious, and for the third we may reason in the [[internal language]] of $C$. Clearly \begin{displaymath} 1 \otimes 1 = [x = x \wedge x' = x'] = 1 \end{displaymath} The formula whose meaning is by $R S \otimes R' S'$ is \begin{displaymath} (\exists y. R x y \wedge S y z) \wedge (\exists y'. R' x' y' \wedge S' y' z') \end{displaymath} and we may use [[Frobenius reciprocity]] to get \begin{displaymath} \begin{aligned} & \exists y. (R x y \wedge S y z \wedge y^* \exists y'. R' x' y' \wedge S' y' z') \\ & \equiv \exists y. (R x y \wedge S y z \wedge \exists y'. y^* (R' x' y' \wedge S' y' z')) \\ & \equiv \exists y, y'. R x y \wedge S y z \wedge R' x' y' \wedge S' y' z' \\ \end{aligned} \end{displaymath} which is the meaning of $(R \otimes R')(S \otimes S')$. Finally, the Frobenius law is \begin{displaymath} [\exists x'. (x_1, x_2) = (x', x') = (x_3, x_4)] = [\exists x'. (x_1, x') = (x_3, x_3) \wedge (x_2, x_2) = (x_4, x')] \end{displaymath} which follows from transitivity and symmetry of equality. \end{proof} \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} Other attempted axiomatizations of the same idea ``something that acts like the category of relations in a regular category'' include: \begin{itemize}% \item [[allegories]] \item [[1-category equipped with relations]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[category of correspondences]] \item [[(infinity,n)-category of correspondences]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Carboni and Walters, ``Cartesian Bicategories, I'' \item \href{http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.html}{blog post} showing that any bicategory of relations is an [[allegory]]. Indeed, a bicategory of relations is equivalent to a unitary pretabular allegory. \end{itemize} [[!redirects bicategories of relations]] \end{document}