\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bicharacteristic flow} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{OfTheKleinGordonOperator}{Of the Klein-Gordon operator}\dotfill \pageref*{OfTheKleinGordonOperator} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{propagation_of_singularities}{Propagation of singularities}\dotfill \pageref*{propagation_of_singularities} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $X$ be a [[smooth manifold]] and let $D$ be a [[differential operator]] on (smooth [[sections]] of) the [[trivial line bundle]] over $X$ (or more generally a [[properly supported pseudo-differential operator]]). Then the [[principal symbol]] $q(D)$ of $D$ is equivalently a [[smooth function]] on the [[cotangent bundle]] $T^\ast X$ (by \href{symbol+of+a+differential+operator#BicharacteristicFlow}{this example}). With the [[cotangent bundle]] canonically regarded as a [[symplectic manifold]], let \begin{displaymath} v_{q(D)} \in \Gamma\left(T\left(T^\ast X\right) \right) \end{displaymath} be the corresponding [[Hamiltonian vector field]]. \begin{defn} \label{BicharacteristicFlow}\hypertarget{BicharacteristicFlow}{} The \emph{bicharacteristic flow} of $D$ is the [[Hamiltonian flow|Hamiltonian]] [[flow of a vector field|flow]] of the [[Hamiltonian vector field]] $v_{q(D)}$ inside the submanifold defined by $q = 0$. Moreover: \begin{enumerate}% \item A single [[flow line]] in $T^\ast X$ is called a \emph{bicharacteristic strip} of $D$, \item the [[projection]] of such to a [[curve]] in $X$ is called a \emph{bicharacteristic curve}. \item The [[relation]] $C$ on $T^\ast X$ given by \begin{displaymath} \left((x_1,k_1) \sim (x_2, k_2)\right) \;\coloneqq\; \left( q(x_i,k_i) = 0 \;\;\text{and}\;\; (x_1,k_1) \,\text{is connected to}\, (x_2,k_2) \,\text{by a bicharacteristic strip} \right) \end{displaymath} is called the \emph{bicharacteristic relation}. \end{enumerate} \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{OfTheKleinGordonOperator}{}\subsubsection*{{Of the Klein-Gordon operator}}\label{OfTheKleinGordonOperator} \begin{example} \label{BicharachteristicFlowOfKleinGordonOperator}\hypertarget{BicharachteristicFlowOfKleinGordonOperator}{} \textbf{(bicharacteristic curves of [[wave operator]]/[[Klein-Gordon operators]] are the [[lightlike]] [[geodesics]])} Let $(X,g)$ be a [[Lorentzian manifold]] and let $D \coloneqq \Box_g - m^2$ be its [[wave operator]]/[[Klein-Gordon operator]]. Then the bicharacteristic curves of $D$ (def. \ref{BicharacteristicFlow}) are precisely the [[lightlike]] [[geodesics]] of $(X,e)$, and the bicharacteristic strips are precisely these geodesices with their [[cotangent vectors]]. Accordingly two cotangent vectors are bicharacteristically related $(x_1,k_1) \sim (x_2,k_2)$ precisely if there is a [[lightlike]] [[geodesic]] connecting the points, with $k_1$ and $k_2$ the corresponding cotangents, hence one the result of [[parallel transport]] of the other along the geodesic. \end{example} (\hyperlink{Radzikowski96}{Radzikowski 96, prop. 4.2 and below (6)}) Specifically on [[Minkowski spacetime]]: \begin{example} \label{}\hypertarget{}{} \textbf{([[bicharacteristic flow]] of [[Klein-Gordon operator]] on [[Minkowski spacetime]])} Let $\mathbb{R}^{p,1}$ be [[Minkowski spacetime]] of [[dimension]] $p+1$ consider the [[Klein-Gordon operator]] \begin{displaymath} D \;=\; \eta^{\mu \nu} \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x^\nu} - \left(\tfrac{m c}{\hbar}\right)^2 \,. \end{displaymath} Its [[principal symbol]] is the function \begin{displaymath} \itexarray{ T^\ast \mathbb{R}^{p,1} &\overset{q}{\longrightarrow}& \mathbb{R} \\ (x,k) &\mapsto& \eta^{\mu \nu} k_\mu k_\nu } \end{displaymath} Hence $q(k) = 0$ is the condition that the [[wave vector]] $k$ be [[lightlike]]. The [[Hamiltonian vector field]] corresponding to $q$ is \begin{displaymath} \begin{aligned} v_q & = -\tfrac{1}{2} \eta^{\mu \nu} k_\mu \partial_{x^\nu} \\ & = -\tfrac{1}{2} k^\mu \partial_{x^\mu} \end{aligned} \end{displaymath} in that \begin{displaymath} \begin{aligned} \iota_{v_q} d k_\mu \wedge d x^\mu &= \tfrac{1}{2} \eta^{\mu \nu} k_\mu d k_\mu \\ & = d q(k) \end{aligned} \end{displaymath} It follows that the [[bicharacteristic curves]] are precisely the [[lightlike]] [[curves]] \begin{displaymath} \itexarray{ \mathbb{R} &\overset{\gamma_k}{\longrightarrow}& \mathbb{R}^{p,1} \\ \tau &\mapsto& (\gamma^\mu(0) + \tau k^\mu) } \end{displaymath} and the corresponding [[bicharacteristic strips]] are these with their lightlike contangent vector constantly carried along \begin{displaymath} \itexarray{ \mathbb{R} &\overset{\gamma_k}{\longrightarrow}& T^\ast\mathbb{R}^{p,1} \\ \tau &\mapsto& \left((\gamma^\mu(0) + \tau k^\mu),(k_\mu)\right) } \end{displaymath} \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{propagation_of_singularities}{}\subsubsection*{{Propagation of singularities}}\label{propagation_of_singularities} The \emph{[[propagation of singularities theorem]]} says that the [[wave front set]] of a [[distribution|distributional]] solution to the [[differential equation]] of a sufficiently nice [[differential operator]] (or generally of a [[properly supported pseudo-differential operator]]) is preserved by the bicharacteristic flow. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Johann Duistermaat]], [[Lars Hörmander]], \emph{Fourier integral operators II}, Acta Mathematica 128, 183-269, 1972 (\href{https://projecteuclid.org/euclid.acta/1485889724}{Euclid}) \end{itemize} Review in the context of the [[free field|free]] [[scalar field]] on [[globally hyperbolic spacetimes]] (with $Q$ the [[wave operator]]/[[Klein-Gordon operator]]) is in \begin{itemize}% \item [[Marek Radzikowski]], \emph{Micro-local approach to the Hadamard condition in quantum field theory on curved space-time}, Commun. Math. Phys. 179 (1996), 529--553 (\href{http://projecteuclid.org/euclid.cmp/1104287114}{Euclid}) \end{itemize} [[!redirects bicharacteristic flows]] [[!redirects bicharacteristic strip]] [[!redirects bicharacteristic strips]] [[!redirects bicharacteristic curve]] [[!redirects bicharacteristic curves]] \end{document}