\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{big and little toposes} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{big_and_little_toposes}{}\section*{{Big and little toposes}}\label{big_and_little_toposes} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{relationships}{Relationships}\dotfill \pageref*{relationships} \linebreak \noindent\hyperlink{the_big_and_little_topos_of_an_object}{The big and little topos of an object}\dotfill \pageref*{the_big_and_little_topos_of_an_object} \linebreak \noindent\hyperlink{axiomatizations}{Axiomatizations}\dotfill \pageref*{axiomatizations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are two different (related) relationships between [[Grothendieck topoi]] and a notion of \emph{generalized [[space]]}. (Recall that a Grothendieck topos $T$ is a [[category of sheaves]] $T = Sh(S)$ on some [[site]] $S$.) On the one hand, we can regard the topos \emph{itself} as a generalized space. This tends to be a useful point of view when the site $S$ is the [[category of open subsets]] $Op(X)$ of a [[topological space]] $X$ (or some [[manifold]] or the like), or some other site which we regard as containing data from only ``one space.'' In this case, we refer to $T$ as a \textbf{little topos}, or (if we fail to translate the original French) a \textbf{petit topos}. On the other hand, we can view a topos $T$ as a well-behaved category whose \emph{objects} are generalized spaces. This tends to be a useful point of view when the site $S$ is a category of \emph{all test [[space]]s} in some sense, such as [[Top]], [[Diff]], or [[CartSp]]. In this case, we refer to $T$ as a \textbf{big topos}, or (in French) a \textbf{gros topos}. These distinctions carry over in a straightforward way to higher topoi such as [[(∞,1)-topoi]]. \hypertarget{relationships}{}\subsection*{{Relationships}}\label{relationships} Objects in a big topos $Sh(S)$ may be thought of as [[space]]s \emph{modeled on $S$}, in the sense described at [[motivation for sheaves, cohomology and higher stacks]] and at [[space]]. On the other hand, the objects of a petit topos, such as $Sh(X)$, can also be regarded as a kind of generalized spaces, but generalized spaces \emph{over $X$} on which the rigid structure of morphisms in $Op(X)$ (only inclusions of subsets, no more general maps) induces a correspondingly rigid structure so that they are not all that general. In fact, $Sh(Op(X))$ is equivalent to the category of [[etale space]]s over $X$---i.e. spaces ``modeled on $X$'' in a certain sense. More generally, for any topos $E$, the objects of $E$ can be identified with [[local homeomorphisms of toposes]] into $E$. From the ``little topos'' perspective, it can be helpful to think of a ``big topos'' as a ``fat point,'' which is not ``spread out'' very much spatially itself, but contains within that point lots of different types of ``local data,'' so that even spaces which are ``rigidly'' modeled on that point can have a lot of interesting cohesion and local structure. (One should not be misled by this into thinking that a big topos has \emph{only} one [[point of a topos|point]], although it is usually a [[local topos]] and hence has an [[initial object|initial]] point.) \hypertarget{the_big_and_little_topos_of_an_object}{}\subsection*{{The big and little topos of an object}}\label{the_big_and_little_topos_of_an_object} If $X$ is a topological space, then the canonical little topos associated to $X$ is the sheaf topos $Sh(X)$. On the other hand, if $S$ is a site of probes enabling us to regard $X$ as an object of a big topos $H = Sh(S)$, then we can also consider the topos $H/X$ as a representative of $X$. These two toposes are often called the \textbf{little topos of $X$} (or \textbf{petit topos of $X$}) and the \textbf{big topos of $X$} (or \textbf{gros topos of $X$}) respectively. There might be some debate about whether $H/X$ is, itself, ``a little topos'' or ``a big topos.'' While it certainly contains information about the space $X$ specifically, its objects are not ``spaces locally modeled on $X$'' but rather spaces locally modeled on the big site $S$ which happen to have a map to $X$. The standard phrase ``the big topos of $X$'' is the most descriptive. Note that if $X$ is actually an \emph{object} of the site $S$, then $H/X$ can be identified with the topos of sheaves on the [[slice category|slice]] site $S/X$ (and otherwise, it can be identified with the topos of sheaves on the [[category of elements]] of $X\in Sh(S)$). This site $S/X$ is often referred to as the [[big site]] of $X$, as compared to the [[little site]], which is $Op(X)$ (or appropriate replacement). The topos $Sh(S/X)$ can thus be viewed as spaces modelled on $S$, but parameterised by the representable sheaf $X$. Note that when $S=Top$ with its local-homeomorphism topology, there is a canonical functor $Op(X) \to S/X$ which preserves finite limits and both [[cover-preserving functor|preserves]] and [[cover-reflecting functor|reflects]] covering families. Therefore, it induces both a geometric morphism $H/X \to Sh(X)$ and one $Sh(X) \to H/X$, of which the latter is the left adjoint of the former in [[Topos]]. In other words, the geometric morphism $H/X \to Sh(X)$ is [[local geometric morphism|local]], and in particular a [[homotopy equivalence of toposes]]. This fact relating the big and little toposes of $X$ also holds in other cases. \hypertarget{axiomatizations}{}\subsection*{{Axiomatizations}}\label{axiomatizations} \begin{itemize}% \item If a site $S$ is given by a [[Grothendieck pretopology]], then one can define an associated notion of a [[little site]] associated to any object of $S$, and hence both a little topos and a big topos, which are related as above. \item One proposed axiomatization of the notion of big topos is that of a [[cohesive topos]]. \item In his early papers in the 80s, [[Lawvere]] emphasized the existence of a contractible [[subobject classifier]], a concept which together with the [[adjoint quadruple]] goes under the name [[sufficiently cohesive topos]] in the later axiomatization (modulo some fineprint). \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For $X$ a [[topological space]], the \emph{little topos} that it defines is the [[category of sheaves]] $Sh(X) := Sh(Op(X))$ on the [[category of open subsets]] of $X$. A general object in this topos can be regarded as an [[etale space]] over $X$. The space $X$ itself is incarnated as the [[terminal object]] $X = * \in Sh(X)$. On the other hand, a \emph{big topos} in which $X$ is incarnated is a [[category of sheaves]] on a [[site]] of test spaces with which $X$ may be probed. For instance for $C =$ [[Top]], or [[Diff]] or [[CartSp]] with their standard [[coverage]]s, $Sh(C)$ is such a big topos. See for instance, [[topological topos]] and the [[quasi-topos]] of [[quasitopological space]]s. In good cases, the intrinsic properties of $X$ do not depend on whether one regards it as a little topos or as an object of a gros topos. For instance at [[cohomology]] in the section it is discussed how the [[nonabelian cohomology]] of a [[paracompact space|paracompact]] [[manifold]] $X$ with constant coefficients gives the same answer in each case. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[functorial geometry]], [[space and quantity]] \item [[topological site]], [[continuous truth]] \item [[cohesive topos]] \begin{itemize}% \item [[sufficiently cohesive topos]] \item [[infinitesimal cohesive (infinity,1)-topos]] \item [[quality type]] \end{itemize} \item [[étendue]] \item [[locally decidable topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of a \emph{gros topos} of a \emph{topological space} is due to [[Jean Giraud]]. Some early results from the Grothendieck school appear in \begin{itemize}% \item [[M. Artin]], [[A. Grothendieck]], [[J. L. Verdier]], \emph{Th\'e{}orie des Topos et Cohomologie Etale des Sch\'e{}mas ([[SGA4]])} , Springer LNM \textbf{269} (1972). (expos\'e{} IV, 2.5 pp.316-318, 4.10 pp.358-365) \end{itemize} In this context see also \begin{itemize}% \item [[Saunders Mac Lane|S. Mac Lane]], [[Ieke Moerdijk|I. Moerdijk]], \emph{Sheaves in Geometry and Logic} , Springer Heidelberg 1994. (pp.113, 325, 416) \end{itemize} In the context of a discussion of the [[big Zariski topos]] Lawvere calls the gros-petit distinction `\emph{a surprising twist of logic that is not yet fully clarified}' on p.110 of his contribution to the \emph{Eilenberg-Festschrift}: \begin{itemize}% \item [[Bill Lawvere]], \emph{Variable quantities and variable structures in topoi} , pp.101-131 in Heller, Tierney (eds.), \emph{Algebra, Topology and Category Theory} , Academic Press New York 1976. \end{itemize} The suggestion that a \emph{general notion} of gros topos is needed goes back to some remarks in \emph{[[Pursuing Stacks]]}. A precise axiom system capturing the notion is first proposed in \begin{itemize}% \item [[Bill Lawvere]], \emph{Categories of spaces may not be generalized spaces, as exemplified by directed graphs}, preprint, State University of New York at Buffalo, (1986) Reprints in Theory and Applications of Categories, No. 9, 2005, pp. 1--7.(\href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6357&rep=rep1&type=pdf}{pdf}) \end{itemize} The axioms 0 and 1 for \emph{toposes of generalized spaces} given there later became called the axioms for a [[cohesive topos]], together with axiom 2 they make out a [[sufficiently cohesive topos]]. Further discussion of this axiomatics for [[gros topos]]es is in \begin{itemize}% \item [[Bill Lawvere]], \emph{Categories of space and quantity} in: J. Echeverria et al (eds.), \emph{The Space of mathematics}, de Gruyter, Berlin, New York (1992) \end{itemize} where a proposal for a general axiomatization of [[homotopy]]/[[homology]]-like ``extensive quantities'' and [[cohomology]]-like ``intensive quantities'') as covariant and contravariant functors out of a distributive category are considered. The following two papers contain Lawvere's early view of a trichotomy between big toposes vs. étendue and locally decidable toposes as paradigmatic ``generalized spaces'' with ``infinitesimally cohesive'' in between, with the latter subsumed into the fine structure of cohesion in more recent versions \begin{itemize}% \item [[F. W. Lawvere]], \emph{Qualitative Distinctions between some Toposes of Generalized Graphs} , Cont. Math. \textbf{92} (1989) pp.261-299. \item [[F. W. Lawvere]], \emph{[[Some Thoughts on the Future of Category Theory]]} , pp.1-13 in Springer LNM \textbf{1488} (1991). \end{itemize} The left and right adjoint to the global section functor as a means to identify discrete and codiscrete spaces respectively is also mentioned in \begin{itemize}% \item [[Bill Lawvere]] \emph{Taking categories seriously}, Reprints in Theory and Applications of Categories, No. 8, 2005, pp. 1--24. (\href{http://www.emis.de/journals/TAC/reprints/articles/8/tr8.pdf}{pdf}) \end{itemize} on \href{http://www.tac.mta.ca/tac/reprints/articles/8/tr8.pdf#page=14}{page 14}. Under the term \emph{categories of cohesion} these axioms are discussed in \begin{itemize}% \item [[Bill Lawvere]], \emph{Axiomatic cohesion} Theory and Applications of Categories, Vol. 19, No. 3, 2007, pp. 41--49. (\href{http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf}{pdf}) \end{itemize} Another definition of gros vs petit toposes and remarks on applications in [[Galois theory]] is in \begin{itemize}% \item Nick Duncan, \emph{Gros and petit toposes} (\href{http://www.cheng.staff.shef.ac.uk/pssl88/pssl88-duncan.pdf}{pdf}) \end{itemize} and yet another one is in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Spectral Algebraic Geometry]]}, chapter 20 ``Fractured $\infty$-Topoi'' (\href{http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf}{pdf}) \end{itemize} There is also something relevant in this article: \begin{itemize}% \item [[Mathieu Anel]], \emph{Grothendieck topologies from unique factorization systems} (\href{http://arxiv.org/abs/0902.1130}{arXiv:0902.1130}) \item [[Mamuka Jibladze]], \emph{Homotopy types for ``gros'' toposes}, thesis, \href{http://www.rmi.ge/~jib/pubs/thesis.pdf}{pdf} \item [[Peter Johnstone]], \emph{Calibrated Toposes} , Bull. Belgian Math. Soc. - Simon Stevin \textbf{19} no.5 (2012) pp.889-907. (\href{http://projecteuclid.org/euclid.bbms/1354031555}{projecteuclid}) \end{itemize} A discussion and comparison of big vs little approaches to $(\infty,1)$-topos theory began at these blog entries: \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2010/10/cohesive_toposes.html}{Cohesive (∞,1)-toposes} and \href{http://golem.ph.utexas.edu/category/2010/10/petit_1toposes.html}{Petit (∞,1)-toposes}. \end{itemize} [[!redirects big topos]] [[!redirects big toposes]] [[!redirects big topoi]] [[!redirects gros topos]] [[!redirects gros toposes]] [[!redirects gros topoi]] [[!redirects little topos]] [[!redirects little toposes]] [[!redirects little topoi]] [[!redirects petit topos]] [[!redirects petit toposes]] [[!redirects petit topoi]] [[!redirects big or little topos]] [[!redirects big or little toposes]] [[!redirects big or little topoi]] [[!redirects big and little topos]] [[!redirects big and little toposes]] [[!redirects big and little topoi]] [[!redirects little or big topos]] [[!redirects little or big toposes]] [[!redirects little or big topoi]] [[!redirects little and big topos]] [[!redirects little and big toposes]] [[!redirects little and big topoi]] [[!redirects gros or petit topos]] [[!redirects gros or petit toposes]] [[!redirects gros or petit topoi]] [[!redirects gros and petit topos]] [[!redirects gros and petit toposes]] [[!redirects gros and petit topoi]] [[!redirects petit or gros topos]] [[!redirects petit or gros toposes]] [[!redirects petit or gros topoi]] [[!redirects petit and gros topos]] [[!redirects petit and gros toposes]] [[!redirects petit and gros topoi]] [[!redirects petit (∞,1)-topos]] [[!redirects petit (infinity,1)-topos]] [[!redirects petit (∞,1)-toposes]] [[!redirects petit (infinity,1)-toposes]] [[!redirects gros (∞,1)-topos]] [[!redirects gros (infinity,1)-topos]] [[!redirects gros (∞,1)-toposes]] [[!redirects gros (infinity,1)-toposes]] \end{document}