\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bijective proof} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{combinatorics}{}\paragraph*{{Combinatorics}}\label{combinatorics} [[!include combinatorics - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{binomial_identity}{Binomial identity}\dotfill \pageref*{binomial_identity} \linebreak \noindent\hyperlink{binomial_identity_2}{$q$-binomial identity}\dotfill \pageref*{binomial_identity_2} \linebreak \noindent\hyperlink{counting_trees_cayleys_theorem}{Counting trees: Cayley's theorem}\dotfill \pageref*{counting_trees_cayleys_theorem} \linebreak \noindent\hyperlink{vandermonde_identity}{Vandermonde identity}\dotfill \pageref*{vandermonde_identity} \linebreak \noindent\hyperlink{stirling_number_identities}{Stirling number identities}\dotfill \pageref*{stirling_number_identities} \linebreak \noindent\hyperlink{polynomial_identities}{Polynomial identities}\dotfill \pageref*{polynomial_identities} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In enumerative [[combinatorics]], a ``bijective proof'' refers to a basic method of counting the number of structures of a certain type supported on a finite set of underlying points, by analyzing structure in two different ways. It is really a special case of ``[[categorification]]'': an identity $a = b$ where $a$ and $b$ are [[natural number]] expressions is proved by taking underlying cardinalities of a [[bijection]] $A \cong B$ between sets of structures, hence the name. (If taking cardinalities is an example of ``decategorifying'', then going the other way from $a = b$ to $A \cong B$ would be ``categorifying'' or promoting an equation to an isomorphism.) In some sense this is what the theory of [[species]] is all about: formalizing the operations adhering to bijective proofs. Often bijective proofs give an impression of elegance or enlightenment: rather than prove natural number or polynomial identities through acts of symbolic manipulation, one \emph{sees} the identity by drawing pictures of structures that the two sides of the identity are counting. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For the moment we'll just jot down some possible examples for illustrating the method; these are to be filled in later, or to be linked to other nLab articles where the bijective proof is given. \hypertarget{binomial_identity}{}\subsubsection*{{Binomial identity}}\label{binomial_identity} See for now [[binomial theorem]]. \hypertarget{binomial_identity_2}{}\subsubsection*{{$q$-binomial identity}}\label{binomial_identity_2} For more details, see the \href{https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient}{Wikipedia article}. Algebraically, one may introduce the $q$-binomial coefficients $\binom{n}{k}_q$ by introducing a $q$-affine plane (or quantum affine plane, to be connected with [[quantum affine algebra]]) and its associated (non-commutative) algebra \begin{displaymath} k[x, y]_q = k\langle x, y \rangle/(y x = q x y) \end{displaymath} where $q \in k$ is a parameter, and then writing $(x + y)^n = \sum_{k = 0}^n \binom{n}{k}_q x^k y^{n-k}$. However, an illuminating combinatorial interpretation of the $q$-binomial coefficients is that they count points in a [[Grassmannian]] consisting of $k$-dimensional linear subspaces of an $n$-dimensional [[vector space]] $\mathbb{F}_q^n$ over a [[finite field]] $\mathbb{F}_q$ of cardinality $q$. This interpretation can be used to provide a bijective proof of the $q$-Pascal identity \begin{displaymath} \binom{n}{k}_q = \binom{n-1}{k}_q + q^{n-k}\binom{n-1}{k-1}_q. \end{displaymath} For, if we choose a standard affine hyperplane $H = \{x_n = 1\}$ in $\mathbb{F}_q^n$, then any linear $k$-plane $W$ in $\mathbb{F}_q^n$ either intersects $H$ in an affine $(k-1)$-plane in the affine $(n-1)$-space, or intersects $H$ in the empty set, i.e., $W$ is contained in the linear space $\{x_n = 0\}$. The number of $W$ satisfying the latter condition is $\binom{n-1}{k}_q$, and the number of $W$ satisfying the former is in bijection with the number of $(k-1)$-dimensional affine subspaces of $\mathbb{F}_q^{n-1}$, which is $q^{n-1}$ times the number of linear subspaces $\binom{n-1}{k-1}_q$ divided by $q^{k-1}$, the number of translations which stabilize a given affine subspace. (Maybe to be rewritten later.) \hypertarget{counting_trees_cayleys_theorem}{}\subsubsection*{{Counting trees: Cayley's theorem}}\label{counting_trees_cayleys_theorem} Cayley's theorem, here not to be confused with Cayley's observation that every group (monoid) is a subgroup (submonoid) of a permutation group (endofunction monoid), says that the number of tree structures on an $n$-element set $\{x_1, \ldots, x_n\}$ is $n^{n-2}$. There are many proofs of this fact in the literature. One, due to Gilbert Labelle and made popular by Andr\'e{} Joyal, proceeds by establishing a bijection between trees equipped with a pair $(x_i, x_j)$ of nodes (allowing $x_i = x_j$) and the number of endofunctions on $X = \{x_1, \ldots, x_n\}$. On the one hand, such a structure $(T, x_i, x_j)$ on $X$ can be identified with a linearly ordered set (the path $P$ from $x_i$ to $x_j$ in $T$) together with, for each node $y$ along that path, a rooted tree structure $T_y$ consisting of nodes $x \in X$ for which the shortest path in $T$ from $x$ to $P$ ends at $y$. (As a subgraph of $T$, this naturally forms a tree $T_y$ rooted at $y$.) Thus, such a structure $(T, x_i, x_j)$ on $X$ determines and is determined by an equivalence relation $E$ on $X$, a rooted tree structure on each equivalence class, and a linear ordering of the set $X/E$ of equivalence classes. On the other hand, each endofunction on $X$, say $f: X \to X$, has an [[eventual image]] or stable set $stab(f) = \bigcap_{n \geq 0} f^n(X)$, on which $f$ acts by a permutation (i.e., bijectively). For each $y \in stab(f)$, there is a rooted tree $T_y$ which consists of all $x \in X$ for which the set of iterates $x, f(x), f^2(x), \ldots$ first lands in $stab(f)$ at $y$. Thus an endofunction on $X$ determines and is determined by an equivalence relation $E$ on $X$, a rooted tree structure on each equivalence class, and a permutation on the set $X/E$ of equivalence classes. Since the number of permutations on $X/E$ is equinumerous with the number of linear orderings of $X/E$, we conclude that the set of ``bipointed tree'' structures on $X$ is equinumerous with the set of endofunctions on $X$. Thus the number of bipointed tree structures $(T, x_i, x_j)$ on $X$ is $n^n$, and therefore the number of tree structures $T$ on $X$ is $n^{n-2}$. \hypertarget{vandermonde_identity}{}\subsubsection*{{Vandermonde identity}}\label{vandermonde_identity} \hypertarget{stirling_number_identities}{}\subsubsection*{{Stirling number identities}}\label{stirling_number_identities} \hypertarget{polynomial_identities}{}\subsection*{{Polynomial identities}}\label{polynomial_identities} One method for proving [[polynomial]] identities (equations $p = q$ between polynomials $p, q \in \mathbb{C}[x_1, \ldots, x_k]$ in several variables) is first to give a bijective proof for the special case in which natural numbers $m_i$ are substituted for the variables $x_i$, and then reason that there are enough natural numbers that the polynomial identity must hold generally. More formally, two polynomials are equal, $p(x_1, \ldots, x_k) = q(x_1, \ldots, x_k)$, if $p(m_1, \ldots, m_k) = q(m_1, \ldots, m_k)$ for all choices of natural numbers $m_i$. Relatedly, the set $\mathbb{N}^k \subseteq \mathbb{C}^k$ is Zariski-dense (i.e., the closure of $\mathbb{N}^k$ in $\mathbb{C}^k$ equipped with the [[Zariski topology]] is all of $\mathbb{C}^k$). This is intuitively obvious of course. As a public service, we prove a more general result. \begin{prop} \label{}\hypertarget{}{} Suppose $B$ is an [[infinite set|infinite]] [[subset]] of an [[integral domain]] $A$. Then a polynomial $p(x_1, \ldots, x_k) \in A[x_1, \ldots, x_k]$ is uniquely determined by its values it takes at arguments $b_1, \ldots, b_k \in B$. \end{prop} \begin{proof} It suffices to show that if $p(b_1, \ldots, b_k) = 0$ for every choice of $b_i \in B$, then $p = 0$. We prove this by induction on $k$. The case $k = 0$ is trivial. Assuming the assertion as induction hypothesis for case $k$, suppose $p \in A[x_1, \ldots, x_k, x_{k+1}]$ satisfies $p(b_1, \ldots, b_k, b) = 0$ for all choices $b_i \in B$ and $b \in B$. Then by induction, for each fixed $b \in B$ the polynomial $p(x_1, \ldots, x_k, b) \in A[x_1, \ldots, x_k]$ is identically zero. Thus if $F$ is the [[field of fractions]] of $A[x_1, \ldots, x_k]$, and if we regard $p$ as an element of the [[Euclidean domain]] $F[x_{k+1}]$ under the obvious embedding \begin{displaymath} A[x_1, \ldots, x_k, x_{k+1}] \cong A[x_1, \ldots, x_k][x_{k+1}] \hookrightarrow F[x_{k+1}], \end{displaymath} then $p$ has infinitely many [[roots]] $b$ in $A$ and thus in $F$, forcing $p$ to be identically zero. \end{proof} \end{document}