\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{biproduct} \begin{quote}% This entry is about [[coproducts]] coinciding with [[products]]. For the notion of biproduct in the sense of [[bicategory]] theory see at [[2-limit]]. See at \emph{[[bilimit]]} for general disambiguation. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{additive_and_abelian_categories}{}\paragraph*{{Additive and abelian categories}}\label{additive_and_abelian_categories} [[!include additive and abelian categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{SemiadditiveCategories}{Semiadditive categories}\dotfill \pageref*{SemiadditiveCategories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SemiadditivityAsStructureProperty}{Semiadditivity as structure/property}\dotfill \pageref*{SemiadditivityAsStructureProperty} \linebreak \noindent\hyperlink{BiproductsImplyEnrichment}{Biproducts imply enrichment -- Relation to additive categories}\dotfill \pageref*{BiproductsImplyEnrichment} \linebreak \noindent\hyperlink{biproducts_as_enriched_cauchy_colimits}{Biproducts as enriched Cauchy colimits}\dotfill \pageref*{biproducts_as_enriched_cauchy_colimits} \linebreak \noindent\hyperlink{biproducts_from_duals}{Biproducts from duals}\dotfill \pageref*{biproducts_from_duals} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{biproduct} in a [[category]] $\mathcal{C}$ is an operation that is both a [[product]] and a [[coproduct]], in a compatible way. Morphisms between finite biproducts are encoded in a [[matrix calculus]]. Finite biproducts are best known from [[additive category|additive categories]]. A category which has biproducts but is not necessarily [[enriched category|enriched]] in [[Ab]], hence not necessarily [[additive category|additive]], is called a \emph{semiadditive category}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{C}$ be a [[category]] with [[zero morphisms]]; that is, $C$ is [[enriched category|enriched]] over [[pointed sets]] (for example, $C$ might have a [[zero object]]). For $c_1, c_2$ two objects in $C$, suppose a [[product]] $c_1 \times c_2$ and a [[coproduct]] $c_1 \sqcup c_2$ both exist. \begin{defn} \label{TheCanonicalComparisonMorphism}\hypertarget{TheCanonicalComparisonMorphism}{} Write \begin{displaymath} r_{c_1,c_2} : c_1 \sqcup c_2 \to c_1 \times c_2 \end{displaymath} for the [[morphism]] which is uniquely defined (via the [[universal property]] of [[coproduct]] and [[product]]) by the condition that \begin{displaymath} \left( c_i \to c_1 \sqcup c_2 \stackrel{r}{\to} c_1 \times c_2 \to c_j \right) = \left\{ \itexarray{ Id_{c_i} & if \; i = j \\ 0_{i,j} & if \; i \neq j } \right. \, \end{displaymath} where the last and first morphisms are the [[projections]] and [[co-projections]], respectively, and where $0_{i,j}$ is the [[zero morphism]] from $c_i$ to $c_j$. Thus $r_{c_1, c_2} = (Id_{c_1}, 0_{1,2}) \coprod (0_{2,1}, Id_{c_2})$, where $(f, g): d \to a \times b$ denotes the map induced by $f : d \to a$ and $g : d \to b$. \end{defn} \begin{defn} \label{Biproduct}\hypertarget{Biproduct}{} If the morphism $r_{c_1,c_2}$ in def. \ref{TheCanonicalComparisonMorphism}, is an [[isomorphism]], then the isomorphic objects $c_1 \times c_2$ and $c_1 \sqcup c_2$ are called [[generalized the|the]] \textbf{biproduct} of $c_1$ and $c_2$. This object is often denoted $c_1 \oplus c_2$, alluding to the [[direct sum]] (which is often an example). If $r_{c_1,c_2}$ is an isomorphism for all objects $c_1, c_2 \in \mathcal{C}$ and hence a [[natural isomorphism]] \begin{displaymath} r \;\colon\; (-)\coprod (-) \stackrel{\simeq}{\longrightarrow} (-) \times (-) \end{displaymath} then $\mathcal{C}$ is called a \hyperlink{SemiadditiveCategories}{semiadditive category}. \end{defn} \begin{remark} \label{}\hypertarget{}{} Definition \ref{Biproduct} has a straightforward generalization to biproducts of any number of objects (although this requires extra structure on the category in [[constructive mathematics]] if the set indexing these objects might not have [[decidable equality]]). A [[zero object]] is the biproduct of no objects. \end{remark} \hypertarget{SemiadditiveCategories}{}\subsection*{{Semiadditive categories}}\label{SemiadditiveCategories} A category $C$ with all finite biproducts is called a \textbf{semiadditive category}. More precisely, this means that $C$ has all finite products and coproducts, that the unique map $0\to 1$ is an isomorphism (hence $C$ has a zero object), and that the canonical maps $c_1 \sqcup c_2 \to c_1 \times c_2$ defined above are isomorphisms. Amusingly, for $C$ to be semiadditive, it actually suffices to assume that $C$ has finite products and coproducts and that there exists \emph{any} [[natural transformation|natural]] family of isomorphisms $c_1 \sqcup c_2 \cong c_1 \times c_2$ --- not necessarily the canonical maps constructed above. A proof can be found in (\hyperlink{Lack09}{Lack 09}). An [[additive category]], although normally defined through the theory of [[enriched categories]], may also be understood as a semiadditive category with an [[extra property]], as explained below at \emph{\hyperlink{BiproductsImplyEnrichment}{Properties -- Biproducts imply enrichment}}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SemiadditivityAsStructureProperty}{}\subsubsection*{{Semiadditivity as structure/property}}\label{SemiadditivityAsStructureProperty} Given a category $\mathcal{C}$ with [[zero morphisms]], one may imagine equipping it with the [[structure]] of a chosen [[natural isomorphism]] \begin{displaymath} \psi_{(-),(-)} : (-)\coprod (-) \stackrel{\simeq}{\longrightarrow} (-)\times(-) \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} (\hyperlink{Lack09}{Lack 09, proof of theorem 5}). If a [[category]] $\mathcal{C}$ with finite [[coproducts]] and [[products]] carries any [[natural isomorphism]] $\psi_{(-),(-)}$ from [[coproducts]] to [[products]], then \begin{displaymath} \array { c_1\coprod c_2 & \overset{\psi_{c_1, 0} + \psi_{0, c_2}}\rightarrow & c_1 \coprod c_2 \\ & \searrow^{r_{c_1, c_2}} & \downarrow^{\psi_{c_1, c_2}} \\ & & c_1 \times c_2 } \end{displaymath} commutes for any two object $c_1$ and $c_2$. \end{prop} Hence $r_{c_1, c_2}$ is an isomorphism so that $\mathcal{C}$ is semi-additive. See [[non-canonical isomorphism]] for more. \hypertarget{BiproductsImplyEnrichment}{}\subsubsection*{{Biproducts imply enrichment -- Relation to additive categories}}\label{BiproductsImplyEnrichment} A semiadditive category is automatically [[enriched category|enriched]] over the [[monoidal category]] of [[commutative monoids]] with the usual [[tensor product]], as follows. Given two morphisms $f, g: a \to b$ in $C$, let their sum $f + g: a \to b$ be \begin{displaymath} a \to a \times a \cong a \oplus a \overset{f \oplus g}{\to} b \oplus b \cong b \sqcup b \to b . \end{displaymath} One proves that $+$ is associative and commutative. Of course, the zero morphism $0: a \to b$ is the usual [[zero morphism]] given by the zero object: \begin{displaymath} a \to 1 \cong 0 \to b . \end{displaymath} One proves that $0$ is the neutral element for $+$ and that this matches the $0$ morphism that we began with in the definition. Note that in addition to a zero object, this construction actually only requires biproducts of an object with itself, i.e. biproducts of the form $a\oplus a$ rather than the more general $a\oplus b$. If additionally every morphism $f: a \to b$ has an inverse $-f: a \to b$, then $C$ is enriched over the category $Ab$ of [[abelian groups]] and is therefore (precisely) an \textbf{[[additive category]]}. If, on the other hand, the addition of morphisms is idempotent ($f+f=f$), then $C$ is enriched over the category $SLat$ of [[semilattices]] (and is therefore a kind of [[2-poset]]). \hypertarget{biproducts_as_enriched_cauchy_colimits}{}\subsubsection*{{Biproducts as enriched Cauchy colimits}}\label{biproducts_as_enriched_cauchy_colimits} Conversely, if $C$ is already known to be enriched over abelian monoids, then a binary biproduct may be defined purely diagrammatically as an object $c_1\oplus c_2$ together with injections $n_i:c_i\to c_1\oplus c_2$ and projections $p_i:c_1\oplus c_2 \to c_i$ such that $p_j n_i = \delta_{i j}$ (the [[Kronecker delta]]) and $n_1 p_1 + n_2 p_2 = 1_{c_1\oplus c_2}$. It is easy to check that makes $c_1\oplus c_2$ a biproduct, and that any binary biproduct must be of this form. Similarly, an object $z$ of such a category is a zero object precisely when $1_z= 0_z$, its identity is equal to the zero morphism. It follows that functors enriched over abelian monoids must automatically preserve finite biproducts, so that finite biproducts are a type of [[Cauchy colimit]]. Moreover, any product \emph{or} coproduct in a category enriched over abelian monoids is actually a biproduct. For categories enriched over [[suplattices]], this extends to all small biproducts, with the condition $n_1 p_1 + n_2 p_2 = 1_{c_1\oplus c_2}$ replaced by $\bigvee_{i} n_i p_i = 1_{\bigoplus_i c_i}$. In particular, the category of suplattices has all small biproducts. \hypertarget{biproducts_from_duals}{}\subsubsection*{{Biproducts from duals}}\label{biproducts_from_duals} The existence of [[dual objects]] tends to imply (semi)additivity; see (\hyperlink{Houston06}{Houston 08}, \href{http://mathoverflow.net/questions/14402/semiadditivity-and-dualizability-of-2/21307}{MO discussion}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Categories with biproducts include: \begin{itemize}% \item [[K(n)-local stable homotopy theory]] (\hyperlink{HopkinsLurie14}{Hopkins-Lurie 14}) \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bilimit]] \item [[semiadditive (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Stephen Lack]], \emph{Non-canonical isomorphisms}, (\href{http://arxiv.org/abs/0912.2126}{arXiv:0912.2126}). \item [[Robin Houston]], \emph{Finite Products are Biproducts in a Compact Closed Category}, Journal of Pure and Applied Algebra, Volume 212, Issue 2, February 2008, Pages 394-400 (\href{http://arxiv.org/abs/math/0604542}{arXiv:math/0604542}) \item [[Michael Hopkins]], [[Jacob Lurie]], \emph{[[Ambidexterity in K(n)-Local Stable Homotopy Theory]]} (2014) \end{itemize} A related discussion is archived at $n$\href{http://nforum.mathforge.org/discussion/4966/zero-morphism-and-additive-categories/?Focus=39983#Comment_39983}{Forum}. [[!redirects biproducts]] [[!redirects semiadditive category]] [[!redirects semiadditive categories]] [[!redirects semi-additive category]] [[!redirects semi-additive categories]] \end{document}