\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bisimplicial set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Diagonal}{Diagonal}\dotfill \pageref*{Diagonal} \linebreak \noindent\hyperlink{TotalSimplicialSets}{Total d\'e{}calage and total simplicial sets}\dotfill \pageref*{TotalSimplicialSets} \linebreak \noindent\hyperlink{geometric_realization}{Geometric realization}\dotfill \pageref*{geometric_realization} \linebreak \noindent\hyperlink{model_structures}{Model structures}\dotfill \pageref*{model_structures} \linebreak \noindent\hyperlink{induced_from_the_diagonal}{Induced from the diagonal}\dotfill \pageref*{induced_from_the_diagonal} \linebreak \noindent\hyperlink{induced_from_codiagonal_}{Induced from codiagonal $\nabla$.}\dotfill \pageref*{induced_from_codiagonal_} \linebreak \noindent\hyperlink{remark_on_notation}{Remark on notation}\dotfill \pageref*{remark_on_notation} \linebreak \noindent\hyperlink{bisimplicial_abelian_groups}{Bisimplicial abelian groups}\dotfill \pageref*{bisimplicial_abelian_groups} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A bisimplicial set is a [[bisimplicial object]] in [[Set]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Diagonal}{}\subsubsection*{{Diagonal}}\label{Diagonal} \begin{defn} \label{}\hypertarget{}{} \textbf{(diagonal)} For $X_{\bullet,\bullet}$ a bisimplicial set, its \textbf{diagonal} is the simplicial set that is the precomposition with $(Id, Id) : \Delta^{op} \to \Delta^{op} \times \Delta^{op}$, i.e. the simplicial set with components \begin{displaymath} d(X)_n = X_{n,n} \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} \textbf{(realization)} The \textbf{realization} $|X|$ of a bisimplicial set $X_{\bullet,\bullet}$ is the [[simplicial set]] that is given by the [[coend]] \begin{displaymath} |X| = \int^{[n] \in \Delta} X_{n, *} \times \Delta[n] \end{displaymath} in [[sSet]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} \textbf{(diagonal is realization)} For $X$ a bisimplicial set, its diagonal $d(X)$ is (isomorphic to) its realization $|X|$: \begin{displaymath} |X| \simeq d(X) \,. \end{displaymath} \end{prop} This is for instance exercise 1.6 in in \href{http://www.maths.abdn.ac.uk/~bensondj/papers/g/goerss-jardine/ch-4.dvi}{chapter 4} \hyperlink{GoerssJardine}{Goerss-Jardine}. For a derivation see the examples at \emph{[[homotopy colimit]]}. \begin{prop} \label{}\hypertarget{}{} \textbf{(diagonal is homotopy colimit)} The diagonal of a bisimplicial set $X_{\bullet,\bullet}$ is also (up to weak equivalence) the [[homotopy colimit]] of $X$ regarded as a simpliciall diagram in the [[model structure on simplicial sets]] \begin{displaymath} diag X \simeq hocolim (X : \Delta^{op} \to sSet_{Quillen}) \,. \end{displaymath} \end{prop} This appears for instance as theorem 3.6 in (\hyperlink{Isaacson}{Isaacson}). \begin{proof} This follows with the above equivalence to the [[coend]] $diag X \simeq \int^{[k] \in \Delta} \Delta[k] \cdot X_k$ and general expression of [[homotopy colimit]]s by coends (as discussed there) in terms of the [[Quillen bifunctor]] \begin{displaymath} \int^\Delta (-) \cdot (-) : [\Delta, sSet_{Quillen}]_{Reedy} \times [\Delta, sSet_{Quillen}]_{Reedy} \to sSet_{Quillen} \end{displaymath} in [[Reedy model structure]]s (as discussed there) by using that $\Delta[-] : \Delta \to sSet_{Quillen}$ is a Reedy cofibrant resultion of the point in $[\Delta, sSet_{Quillen}]$ and that every object in $[\Delta^{op}, sSet_{Quillen}]_{Reedy}$ is cofibrant. \end{proof} \begin{prop} \label{}\hypertarget{}{} \textbf{(degreewise weak equivalences)} Let $X,Y : \Delta^{op} \times \Delta^{op} \to Set$ be bisimplicial sets. A morphism $f : X \to Y$ which is degreewise in one argument a weak equivalence $f_{n,\bullet} : X(n,\bullet) \to Y(n,\bullet)$ induces a weak equivalence $d(f) : d(X) \to d(Y)$ of the associated diagonal simplicial sets (with respect to the standard [[model structure on simplicial sets]]). \end{prop} \begin{proof} This is prop 1.9 in \href{http://www.maths.abdn.ac.uk/~bensondj/papers/g/goerss-jardine/ch-4.dvi}{chapter 4} of \begin{itemize}% \item Goerss-Jardine, \emph{Simplicial Homotopy Theory} (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{dvi}) \end{itemize} \end{proof} \hypertarget{TotalSimplicialSets}{}\subsubsection*{{Total d\'e{}calage and total simplicial sets}}\label{TotalSimplicialSets} There is a [[functor]] called \emph{[[ordinal sum]]} (see also at [[simplex category]]) \begin{displaymath} + : \Delta^\op \times \Delta^{op} \to \Delta^{op} \,. \end{displaymath} \begin{displaymath} + : [k], [l] \mapsto [k+l+1] \,. \end{displaymath} This induces an [[adjoint triple]] \begin{displaymath} ssSet \stackrel{\overset{+_!}{\longrightarrow}}{\stackrel{\overset{+^*}{\longleftarrow}}{\underset{+_*}{\longrightarrow}}} sSet \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} Here \begin{itemize}% \item $T \coloneqq +_*$ is called the \textbf{total simplicial set} functor or \textbf{Artin-Mazur codiagonal} (we will use the first of these as codiagonal also has another accepted meaning, see [[codiagonal]]); \item $Dec \coloneqq +^*$ is called the [[total décalage]] functor (inside which is plain [[décalage]]); \end{itemize} \end{defn} \begin{prop} \label{}\hypertarget{}{} $T$ preserves degreewise [[weak equivalences]] of [[simplicial sets]]. \end{prop} \begin{prop} \label{TotalAndDiagonal}\hypertarget{TotalAndDiagonal}{} For $X$ any bisimplicial set \begin{itemize}% \item the canonical morphism \begin{displaymath} diag X \to T X \end{displaymath} from the [[diagonal]] to the total simplicial set is a [[weak equivalence]] in the [[model structure on simplicial sets]]; \item the [[unit of an adjunction|adjunction unit]] \begin{displaymath} X \to T Dec X \end{displaymath} is a weak equivalence. \end{itemize} \end{prop} These statements are for instance in (\hyperlink{CegarraRemedios}{CegarraRemedios}) and (\hyperlink{Stevenson}{Stevenson}). They may be considered as a non-additive versions of the [[Eilenberg-Zilber theorem]]. \begin{remark} \label{}\hypertarget{}{} By prop. \ref{TotalAndDiagonal} and the usual \emph{[[Eilenberg-Zilber theorem]]} it follows that under forming chain complexes for [[simplicial homology]], total simplicial sets correspond to [[total complexes]] of [[double complexes]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} After [[geometric realization]] these spaces are even related by a [[homeomorphism]]. \end{remark} (This seems to be due to Berger and H\"u{}bschmann, but related results were known to Zisman as they are so mentioned by Cordier in his work on homotopy limits.) \begin{remark} \label{}\hypertarget{}{} The standard [[delooping]] functor for [[simplicial groups]] \begin{displaymath} \bar W : sGrp \to sSet_* \end{displaymath} is the composite \begin{displaymath} \bar W : sGrp \stackrel{\mathbf{B}}{\longrightarrow} sGrpd \stackrel{N}{\longrightarrow} ssSet \stackrel{T}{\longrightarrow} sSet \,. \end{displaymath} \end{remark} We have the following explicit formula for $T X$, attributed to [[John Duskin]]: \begin{lemma} \label{}\hypertarget{}{} For $X$ a [[bisimplicial set]] the total simplicial set $T X$ is in degree $n$ the [[equalizer]] \begin{displaymath} (T X)_n \to \prod_{i = 0}^n X_{i, n-i} \stackrel{\longrightarrow}{\longrightarrow} \prod_{i = 0}^{n-1} X_{i, n-i-1} \end{displaymath} where the components of the two morphisms on the right are \begin{displaymath} \prod_{i = 0}^n X_{i,n-i} \stackrel{p_i}{\to} X_{i, n-i} \stackrel{d_0^v}{\to} X_{i, n-i-1} \end{displaymath} and \begin{displaymath} \prod_{i = 0}^n X_{i,n-i} \stackrel{p_{i+1}}{\to} X_{i+1,n-i-1} \stackrel{d_{i+1}^h}{\to} X_{i,n-i-1} \,. \end{displaymath} The face maps $d_i : (T X)_n \to (T X)_{n-1}$ are given by \begin{displaymath} d_i = (d_i^v p_0, d_{i-1}^v p_1, \cdots, d_1^v p_{i-1}, d_i^h p_{i+1}, d_i^h p_{i+2}, \cdots, d_i^h p_n ) \end{displaymath} and the degeneracy maps are given by \begin{displaymath} s_i = (s_i^v p_0, s_{i-1}^v p_1, \cdots, s_0^v p_i, s_i^h p_{i+1}, \cdots, s_i^h p_n) \,. \end{displaymath} The $(Dec \dashv T)$-[[unit of an adjunction|adjunction unit]] $\eta : X \to T Dec X$ is given in degree $n$ by \begin{displaymath} \eta : x \mapsto (s_0(x), s_1(x), \cdots, s_n(x)) \,. \end{displaymath} \end{lemma} \hypertarget{geometric_realization}{}\subsubsection*{{Geometric realization}}\label{geometric_realization} See [[geometric realization of simplicial topological spaces]]. \hypertarget{model_structures}{}\subsection*{{Model structures}}\label{model_structures} There are various useful [[model category]] structures on the category of bisimplicial sets. \hypertarget{induced_from_the_diagonal}{}\subsubsection*{{Induced from the diagonal}}\label{induced_from_the_diagonal} There is an [[adjunction]] \begin{displaymath} (L \dashv diag) : ssSet \stackrel{\overset{L}{\longleftarrow}}{\underset{diag}{\longrightarrow}} sSet \,. \end{displaymath} The [[transferred model structure]] along this adjunction of the standard [[model structure on simplicial sets]] exists and with respect to it the above [[Quillen adjunction]] is a [[Quillen equivalence]]. This is due to (\hyperlink{Moerdijk}{Moerdijk 89}) \hypertarget{induced_from_codiagonal_}{}\subsubsection*{{Induced from codiagonal $\nabla$.}}\label{induced_from_codiagonal_} The [[transferred model structure]] on $ssSet$ along the total simplicial set functor $T$ exists. And for it \begin{displaymath} (Dec \dashv T) : ssSet \stackrel{\overset{Dec}{\longleftarrow}}{\underset{T}{\longrightarrow}} sSet \end{displaymath} is a [[Quillen equivalence]]. \begin{prop} \label{}\hypertarget{}{} Every diag-fibration is also a $T$-fibration. \end{prop} This is (\hyperlink{CegarraRemedios}{CegarraRemedios, theorem 9}). \hypertarget{remark_on_notation}{}\paragraph*{{Remark on notation}}\label{remark_on_notation} There are two uses of $\bar W$ in this area, one is as used in (\hyperlink{CegarraRemedios}{CegarraRemedios}) where it is used for the codiagonal (denoted ``$\nabla$'' above), the other is for the [[classifying space]] functor for a [[simplicial group]]. This latter is not only the older of the two uses, but also comes with a related $W$ construction. The relationship between the two is that given a simplicial group or simplicially enriched groupoid, $G$, applying the [[nerve]] functor in each dimension gives a bisimplicial set and $\bar{W}G = \nabla Ner G$. Because of this, some care is needed when using these sources. \hypertarget{bisimplicial_abelian_groups}{}\subsection*{{Bisimplicial abelian groups}}\label{bisimplicial_abelian_groups} \begin{prop} \label{}\hypertarget{}{} Let $A,B : \Delta^{op} \times \Delta^{op} \to Ab$ be bisimplicial abelian groups. A morphism $f : A \to B$ which is degreewise in one argument a weak equivalence $f_{n,\bullet} : A(n,\bullet) \to B(n,\bullet)$ induces a weak equivalence $d(f) : d(A) \to d(B)$ of the associated diagonal complexes. \end{prop} \begin{proof} This is Lemma 2.7 in \href{http://www.maths.abdn.ac.uk/~bensondj/papers/g/goerss-jardine/ch-4.dvi}{chapter 4} of (\hyperlink{GoerssJardine}{GoerssJardine}) \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} Some standard material is for instance in \begin{itemize}% \item [[Paul Goerss]] and [[Rick Jardine]], \emph{Simplicial Homotopy Theory} \end{itemize} \begin{itemize}% \item [[Rick Jardine]], Lecture 008 (2010) (\href{http://www.math.uwo.ca/~jardine/papers/HomTh/lecture008.pdf}{pdf}) \item [[Samuel Isaacson]], \emph{Excercises in homotopy colimits} (\href{http://www-math.mit.edu/~mbehrens/TAGS/Isaacson_exer.pdf}{pdf}) \end{itemize} The total simplicial set functor goes back to \begin{itemize}% \item [[M. Artin]], [[B. Mazur]], \emph{On the Van Kampen theorem} , Topology 5 (1966) 179--189. \end{itemize} The diagonal, total d\'e{}calage and total simplicial set constructions are discussed in \begin{itemize}% \item [[Antonio Cegarra]], [[Josué Remedios]], \emph{The relationship between the diagonal and the bar constructions on a bisimplicial set}, Topology and its applications, volume 153 (1) (2005) (\href{http://www.ugr.es/~acegarra/Paperspdfs/TRBDWC.pdf}{pdf}) \item [[Antonio Cegarra]], [[Josué Remedios]], \emph{The behaviour of the $\bar W$-construction on the homotopy theory of bisimplicial sets}, Manuscripta Mathematica, volume 124 (4) Springer (2007) \end{itemize} \begin{itemize}% \item [[Danny Stevenson]], \emph{D\'e{}calage and Kan's simplicial loop group functor} (\href{http://arxiv.org/abs/1112.0474}{arXiv:1112.0474}) \end{itemize} The diagonal-induced model structure on $ssSet$ is discussed in \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Bisimplicial sets and the group completion theorem} in \emph{Algebraic K-Theory: Connections with Geometry and Topology} , pp 225--240. Kluwer, Dordrecht (1989) \end{itemize} The behaviour of fibrations under [[geometric realization]] of bisimplicial sets is discussed in \begin{itemize}% \item D. Anderson, \emph{Fibrations and geometric realization} , Bull. Amer. Math. Soc. Volume 84, Number 5 (1978), 765-788. (\href{http://projecteuclid.org/euclid.bams/1183541139}{ProjEuclid}) \end{itemize} Discussion of respect of $\bar W$ for fibrant objects is discussed in fact 2.8 of \begin{itemize}% \item [[Antonio M. Cegarra]], Benjam\'i{}n A. Heredia, Josu\'e{} Remedios, \emph{Double groupoids and homotopy 2-types} (\href{http://arxiv.org/abs/1003.3820}{arXiv:1003.3820}) \end{itemize} [[!redirects bisimplicial set]] [[!redirects bisimplicial sets]] [[!redirects simplicial simplicial set]] [[!redirects simplicial simplicial sets]] [[!redirects total simplicial set]] [[!redirects total simplicial sets]] [[!redirects total décalage]] \end{document}