\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bitopological space} \hypertarget{bitopological_space}{}\section*{{Bitopological space}}\label{bitopological_space} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{separation_axioms_for_topologies}{Separation axioms for topologies}\dotfill \pageref*{separation_axioms_for_topologies} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{related_articles}{Related Articles}\dotfill \pageref*{related_articles} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Recall that a [[topological space]] is a [[set]] $X$ equipped with a [[topological structure]] $\mathcal{T}$. Well, a \textbf{bitopological space} is simply a set equipped with \emph{two} topological structures $(X, \mathcal{T}, \mathcal{T}^*)$. Unlike with [[bialgebras]], no compatibility condition is required between these structures. A \textbf{bicontinous map} is a [[function]] between bitopological spaces that is [[continuous map|continuous]] with respect to each topological structure. Bitopological spaces and bicontinuous maps form a [[category]] $BiTop$. \hypertarget{separation_axioms_for_topologies}{}\subsection*{{Separation axioms for topologies}}\label{separation_axioms_for_topologies} Let $Cl$ denote the [[closure operator]] with respect to $\mathcal{T}$ and let $Cl^*$ denote the closure operator with respect to $\mathcal{T}^*$. $\backslash$begin\{proposition\}$\backslash$label\{implications\} Let $(X, \mathcal{T}, \mathcal{T}^*)$ be a bitopological space. Consider the following properties of this space: \begin{enumerate}% \item for each point $x$ there is a $\mathcal{T}$-[[neighborhood base]] consisting of $\mathcal{T}^*$-closed sets; \item for all $x\in X$ and all $\mathcal{T}$-opens $U$ containing $x$ there is a $\mathcal{T}^*$-closed $\mathcal{T}$-neighborhood $V$ of $x$ such that $V \subset U$; \item $Cl^*(O) \subset Cl(O)$ for each $\mathcal{T}^*$-open $O$; \item for all $x\in X$ and all $\mathcal{T}$-neighborhoods $U$ of $x$ the closure $Cl^*(U)$ is a $\mathcal{T}^*$-neighborhood; \item for each point $x$ and each $\mathcal{T}$-closed $\mathcal{T}$-neighborhood $V$ of $x$ in $X$ there exists a $\mathcal{T}^*$-closed $\mathcal{T}$-neighborhood $U$ of $x$ in $X$ such that $U$ is contained in $V$. \end{enumerate} There are the following implications among these properties $\backslash$begin\{centre\} $\backslash$begin\{tikzcd\} \& (2) \& (3) $\backslash$ (5) \& (1) \& (4) $\backslash$arrowRightarrow, from=2-1, to=1-2, ``$\backslash$text\{if $\mathcal{T}$ regular\}'' $\backslash$arrowLeftrightarrow, from=1-2, to=2-2 $\backslash$arrowLeftrightarrow, from=1-3, to=2-3 $\backslash$arrowRightarrow, from=2-2, to=2-1 $\backslash$arrowRightarrow, from=1-3, to=1-2, ``$\backslash$text\{if $\mathcal{T}$ regular\}'' $\backslash$arrowRightarrow, from=2-2, to=2-3 $\backslash$end\{tikzcd\} $\backslash$end\{centre\} Especially, all properties are equivalent if $\mathcal{T}$ is [[regular space|regular]]. $\backslash$end\{proposition\} $\backslash$begin\{proof\} \textbf{\hyperlink{regular1}{(1)} $\iff$ \hyperlink{regular2}{(2)}:} Given a neighborhood base for a point $x$ as guaranteed by the first property. When you spell out the properties of this neighborhood base, you end up with the second property. For the reverse direction start with an arbitrary $\mathcal{T}$-neighborhood base of a point $x$ consisting of open. Apply the second property to every element of this neighborhood base to the desired neighborhood base. \textbf{\hyperlink{coupled1}{(3)} $\iff$ \hyperlink{coupled2}{(4)}:} Suppose property \hyperlink{coupled1}{(3)}, and let $U$ be a $\mathcal{T}$-neighborhood of an arbitrary point $x$. Then the [[complement]] $\widetilde{Cl^*(U)}$ is in $\mathcal{T}^*$, so that $Cl^*(\widetilde{Cl^*U}) \subset Cl(\widetilde{Cl^* U})$ by the first property. Hence $\widetilde{Cl(\widetilde{Cl^*U})} \subset \widetilde{Cl^*(\widetilde{Cl^* U})}$ for the complements. Since $U$ is a $\mathcal{T}$-neighborhood of $x$, $x$ does not belong to $Cl(\widetilde{Cl^*U})$. Moreover, $\widetilde{Cl^*(\widetilde{Cl^*U})}$ is $\mathcal{T}^*$-open and a subset of $Cl^*(U)$. Hence $Cl^*(U)$ is a $\mathcal{T}^*$-neighborhood of $x$. For the converse suppose property \hyperlink{coupled2}{(4)}. Let $O$ be a nonempty $\mathcal{T}^*$-open set and $x$ an element of $Cl^*(O)$. Then if $U$ is any $\mathcal{T}$-neighborhood of $x$, some point $y \in O$ belongs to $Cl^*(U)$ due to the second property. Hence, as $O$ is a $\mathcal{T}^*$-neighborhood of $y$, some point of $U$ belongs to $O$. Thus $x \in Cl(O)$, and therefore $Cl^*(G) \subset Cl(O)$. \textbf{\hyperlink{regular1}{(1)} $\implies$ \hyperlink{coupled2}{(4)}:} Given $x\in X$ and a $\mathcal{T}$-neighborhood $U$ by property \hyperlink{regular1}{(1)} there is a $\mathcal{T}^*$-open $O \subset U$ containing $x$. Hence $O \subset Cl^*(U)$, and $Cl^*(U)$ is a $\mathcal{T}^*$-neighborhood. \textbf{\hyperlink{coupled1}{(3)} and $\mathcal{T}$ regular $\implies$ \hyperlink{regular2}{(2)}:} Let $x\in X$ and $U$ be a $\mathcal{T}$-open containing $x$. By regularity of $\mathcal{T}$ we can find disjoint $\mathcal{T}$-opens $V' \ni x$ and $U' \supset \tilde{U}$ ($\tilde{U}$ denotes the [[complement]]). Set $V \coloneqq Cl^*(V')$. This set is obviously a $\mathcal{T}^*$-closed $\mathcal{T}$-neighborhood of $x$. Due to property \hyperlink{coupled1}{(3)} $V \subset Cl(V')$. Since also $Cl(V') \subset \widetilde{U'}$, we have $V \subset U$. This is to say that $V$ is the $\mathcal{T}$-neighborhood we sought. \textbf{\hyperlink{cotopology2}{(5)} and $\mathcal{T}$ regular $\implies$ \hyperlink{regular2}{(2)}:} Let $x\in X$ and $U$ be a $\mathcal{T}$-open containing $x$. By regularity of $\mathcal{T}$ we can find disjoint $\mathcal{T}$-opens $V' \ni x$ and $U' \supset \tilde{U}$ ($\tilde{U}$ denotes the [[complement]]). Due to property \hyperlink{cotopology2}{(5)} the closed set $\widetilde{U'}$ contains a $\mathcal{T}^*$-closed neighborhood of $x$. This is the neighborhood we sought. \textbf{\hyperlink{regular1}{(1)} $\implies$ \hyperlink{cotopology2}{(5)}:} Given some $\mathcal{T}$-closed $\mathcal{T}$-neighborhood $V$ of some point $x$ choose a neighborhood base according to property \hyperlink{regular1}{(1)} and take an element $U$ therein that is contained in $V$. $\backslash$end\{proof\} $\backslash$begin\{definition\}$\backslash$label\{regular\} Let $(X, \mathcal{T}, \mathcal{T}^*)$ be a bitopological space. The topology $\mathcal{T}$ is \textbf{regular with respect to} $\mathcal{T}^*$ if one of the two equivalent conditions \hyperlink{regular1}{(1)} and \hyperlink{regular2}{(2)} from proposition \ref{implications} holds. A bitopological space $(X, \mathcal{T}, \mathcal{T}^*)$ is called \textbf{pairwise regular} if $\mathcal{T}$ is regular with respect to $\mathcal{T}^*$ and vise versa. $\backslash$end\{definition\} $\backslash$begin\{definition\}$\backslash$label\{coupled\} Let $(X, \mathcal{T}, \mathcal{T}^*)$ be a bitopological space. The topology $\mathcal{T}^*$ is \textbf{coupled to} $\mathcal{T}$ if one of the two equivalent conditions \hyperlink{coupled1}{(3)} and \hyperlink{coupled2}{(4)} from proposition \ref{implications} holds. $\backslash$end\{definition\} Not that is if $\mathcal{T}^*$ is coupled to a finer topology $\mathcal{T} \supset \mathcal{T}^*$ then $\mathcal{T}^*$ is coupled to every topology coarser than $\mathcal{T}$ due to property \hyperlink{coupled1}{(3)}. Moreover in this case also $\mathcal{T}$ is coupled to $\mathcal{T}^*$ (again a direct consequence of property \hyperlink{coupled1}{(3)}). $\backslash$begin\{definition\}$\backslash$label\{cotopology\} Let $(X, \mathcal{T}, \mathcal{T}^*)$ be a bitopological space. The topology $\mathcal{T}^*$ is called a \textbf{[[cotopology]] of} $\mathcal{T}$ if $\mathcal{T}^* \subseteq \mathcal{T}$ and property \hyperlink{cotopology2}{(5)} from proposition \ref{implications} holds. The space $(X, \mathcal{T}^*)$ is also called a \textbf{cospace} of $(X, \mathcal{T}$. $\backslash$end\{definition\} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} It is interesting and perhaps surprising that many advanced topological notions can be described using bitopological spaces, even when you would not na\"i{}vely think that there are two topologies around. (At least, that's my vague memory of what they were good for. I think that this was in some article by Isbell.) \hypertarget{related_articles}{}\subsection*{{Related Articles}}\label{related_articles} \begin{itemize}% \item [[cotopology]] \item [[topologically complete space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{http://en.wikipedia.org/wiki/Bitopological_space}{Wikipedia entry} \item [[Jiri Adamek]], [[Horst Herrlich]], and [[George Strecker]], \emph{Abstract and Concrete Categories: The Joy of Cats}, Dover New York 2009. (\href{http://katmat.math.uni-bremen.de/acc/acc.pdf}{pdf}) pp. 59-60, 278 \item B. Dvalishvili, \emph{Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures and Applications}, Elsevier Amsterdam 2005. \item [[Peter Johnstone]], \emph{Collapsed Toposes as Bitopological Spaces}, pp. 19-35 in \emph{Categorical Topology}, World Scientific Singapore 1989. \item O. K. Klinke, A. Jung, A. Moshier, \emph{A bitopological point-free approach to compactications} (2011). (\href{http://www.cs.bham.ac.uk/~axj/pub/papers/compactifications.pdf}{preprint}) \item R. Kopperman, \emph{Asymmetry and duality in topology}, Topology Appl. \textbf{66} no. 1 (1995) pp. 1-39. \end{itemize} The idea naturally appeared first in the context of quasi-metric spaces \begin{itemize}% \item Wallace Alvin Wilson, \emph{On Quasi-Metric Spaces}, American Journal of Mathematics (1931), vol. 53, no. 3, pp. 675-684. \end{itemize} The notions of separation axioms were introduced in \begin{itemize}% \item J. D. Weston, \emph{On the comparison of topologies} 1956, Journal of the London Mathematical Society, vol. s1-32 no. 3, pp. 342-354, \item J. C. Kelly, \emph{Bitopological spaces}, Proc. London Math. Soc. \textbf{13} no.3 (1963) pp. 71-89. \end{itemize} Only Kelly introduced the concept in its nowadays formulation of a set equipped with two topologies. The Russian school contributed the following comprehensive overviews of this and related topics \begin{itemize}% \item A. A. Ivanov, \emph{Problems of the Theory of Bitopological Spaces}, 1990, Journal of Soviet Mathematics, vol. 52, Issue 1, pp. 2759-2790. Originally published as \emph{Проблематика теории битопологических пространств} in Zap. Nauchn. Sem. POMI, 1988, vol. 167 (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=5560&option_lang=en}{Russian version}). \item A. A. Ivanov, \emph{Problems of the Theory of Bitopological Spaces 2}, 1996, Journal of Math. Sciences, vol. 81, Issue 2. Originally publishes as \emph{Проблематика теории битопологических пространств. 2} in Zap. Nauchn. Sem. POMI, 1993, Volume 208, pp. 5–67 (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=5828&option_lang=eng}{Russian version}). \item A. A. Ivanov, \emph{Problems of the Theory of Bitopological Spaces 3}, 1998, Journal of Math. Sciences, vol. 91, Issue 6, pp 3339–3364. Originally published as \emph{Проблематика теории битопологических пространств. 3} in Zap. Nauchn. Sem. POMI, 1995, Volume 231, pp. 9–54 (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=3739&option_lang=eng}{Russian version}). \end{itemize} as well as a more introductory text book \begin{itemize}% \item \emph{Битопологические пространства}, 1997. Исследования по топологии. 9, Zap. Nauchn. Sem. POMI, 242, editor A. A. Ivanov (\href{http://www.mathnet.ru/php/archive.phtml?jrnid=znsl&wshow=issue&bshow=contents&series=0&year=1997&volume=242&issue=&option_lang=rus&bookID=335}{Russian version}). \end{itemize} [[!redirects bitopological space]] [[!redirects bitopological spaces]] [[!redirects Bitop]] [[!redirects BiTop]] [[!redirects Bi Top]] \end{document}