\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bivariant cohomology theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{AxiomatizazionInHomotopyTheory}{Axiomatization in homotopy theory}\dotfill \pageref*{AxiomatizazionInHomotopyTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Where a [[homology theory]] is a [[covariant functor]] and a [[cohomology theory]] is a [[contravariant functor]] on some [[category]] of [[spaces]], a \emph{bivariant cohomology theory} is a [[bifunctor]], hence a functor of two variables, contravariant in the first, and covariant in the second. Examples: \begin{itemize}% \item In [[noncommutative topology]]: [[KK-theory]]. \item In [[noncommutative algebraic geometry]]: [[bivariant algebraic K-theory]], [[noncommutative motives]]. \end{itemize} \hypertarget{AxiomatizazionInHomotopyTheory}{}\subsection*{{Axiomatization in homotopy theory}}\label{AxiomatizazionInHomotopyTheory} Here are some notes on a proposal for how to usefully formalize bivariant cohomology theory in [[stable homotopy theory|stable]] [[homotopy theory]]. (This is in generalization of the structure of [[KK-theory]], while the original axioms of (\hyperlink{FultonMacPherson81}{Fulton-MacPherson 81}) are a little different\footnote{Thanks to [[Thomas Nikolaus]] for patiently emphasizing this.} . Aspects of the following appear in (\hyperlink{Nuiten13}{Nuiten 13}, \hyperlink{Schreiber14}{Schreiber 14}). See also at \emph{[[dependent linear type theory]]} the section on \emph{\href{dependent+linear+type+theory#SecondaryIntegralTransforms}{secondary integral transforms}}). $\,$ Let $E$ be an [[E-∞ ring]], write $GL_1(E)$ for its [[∞-group of units]]. With $\mathbf{H}$ the ambient [[(∞,1)-topos]], write $\mathbf{H}_{/\mathbf{B}GL_1(E)}$ for the [[slice (∞,1)-topos]] over the [[delooping]] of this [[abelian ∞-group]]. This is the [[(∞,1)-category]] of [[spaces]] equipped with [[(∞,1)-module bundle|(∞,1)-line bundles]] over $E$. Consider an [[(∞,1)-functor]] \begin{displaymath} \Gamma^\ast \;\colon \; \mathbf{H}_{/\mathbf{B}GL_1(E)} \to E Mod \end{displaymath} to the [[(∞,1)-category of (∞,1)-modules]] over $E$, which form $E$-modules of co-sections of $E$-[[(∞,1)-module bundles]] (generalized [[Thom spectra]]). This is well understood for $\mathbf{H} =$ [[∞Grpd]] in which case $\Gamma \simeq \underset{\to}{\lim} \circ i$ is the [[(∞,1)-functor]] [[homotopy colimits]] in $E Mod$ under the canonical embedding $\mathbf{B} GL_1(E) \simeq E Line \hookrightarrow E Mod$. But one can consider similar constructions $\Gamma$ for more general ambient [[(∞,1)-toposes]] $\mathbf{H}$. \begin{defn} \label{BivariantCohomologyByHomsOfCoSections}\hypertarget{BivariantCohomologyByHomsOfCoSections}{} For $\chi_i \colon X_i \to \mathbf{B}GL_1(E)$ two [[objects]] of $\mathbf{H}_{/\mathbf{B}GL_1(E)}$, the \emph{$(\chi_1,\chi_2)$-[[twisted cohomology|twisted]] bivariant $E$-[[cohomology theory|cohomology]]} on $(X_1,X_2)$ is \begin{displaymath} E^{\bullet + \chi_2 - \chi_1}(X_1,X_2) \;\coloneqq\; Hom_{E Mod}\left(\Gamma^\ast_{X_1}\left(\chi_1\right), \Gamma^\ast_{X_2}\left(\chi_2\right)\right) \in E Mod \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} By the general discussion at [[twisted cohomology]], following (\hyperlink{ABG}{ABG, def. 5.1}) we have \begin{itemize}% \item for $X_2 = \ast$ the point, the above bivariant cohomology is the $\chi_1$-twisted $E$-cohomology of $X_1$; \begin{displaymath} E^{\bullet + \chi_1}(X_1, \ast) \simeq E^{\bullet + \chi_1}(X_1) \,. \end{displaymath} \item for $X_1 = \ast$ the point, the above bivariant cohomology is the $\chi_2$-twisted $E$-[[generalized homology|homology]] of $X_2$; \begin{displaymath} E^{\bullet + \chi_2}(\ast, X_2) \simeq E_{\bullet + \chi_2}(X_2) \,. \end{displaymath} \end{itemize} \end{example} \begin{example} \label{}\hypertarget{}{} [[KK-theory]] is a model for bivariant twisted [[topological K-theory]] over [[differentiable stacks]] (hence 1-truncated suitably representable objects in $\mathbf{H} =$ [[Smooth∞Grpd]], see \hyperlink{TuXuLG03}{Tu-Xu-LG 03}). According to (\hyperlink{JoachimStolz09}{Joachim-Stolz 09, around p. 4}) the category $KK$ first of all is naturally an [[enriched category]] $\mathbb{KK}$ over the category $\mathcal{S}$ of [[symmetric spectra]] and as such comes with a symmetric [[monoidal functor|monoidal]] [[enriched functor]] \begin{displaymath} \mathbb{KK} \to KU Mod \,. \end{displaymath} This sends an object to its [[operator K-theory]] spectrum, hence to the $E$-[[dual object|dual]] of the $E$-module of co-sections. \end{example} \begin{remark} \label{}\hypertarget{}{} Generally, one may want to consider in def. \ref{BivariantCohomologyByHomsOfCoSections} the dualized co-section functor \begin{displaymath} \Gamma = [\Gamma^\ast(-), E] \;\colon\; \left(\mathbf{H}_{/\mathbf{B}GL_1(E)}\right)^{op} \to E Mod \,. \end{displaymath} \end{remark} \begin{example} \label{}\hypertarget{}{} A [[correspondence]] in $\mathbf{H}_{/\mathbf{B}GL_1(E)}$ \begin{displaymath} \itexarray{ && Q \\ & {}^{\mathllap{i_1}}\swarrow && \searrow^{\mathrlap{i_2}} \\ X_1 && \swArrow_{\xi} && X_2 \\ & {}_{\mathllap{\chi_1}}\searrow && \swarrow_{\mathrlap{\chi_2}} \\ && \mathbf{B}GL_1(E) } \end{displaymath} is a morphism of ``twisted $E$-[[pure motive|motives]]'' in that it is a [[correspondence]] in $\mathbf{H}$ between the [[spaces]] $X_1$ and $X_2$ equipped with an $(i_1^\ast \chi_1, i_2^\ast \chi_2)$-twisted bivariant $E$-cohomology [[cocycle]] $\xi$ on the correspondence space $Q$. Under the co-sections / [[Thom spectrum]] functor this is sent to a [[correspondence]] \begin{displaymath} \Gamma_{X_1}(\chi_1) \stackrel{\xi}{\rightarrow} \Gamma_Q(i_2^\ast \chi_2) \stackrel{i_2^\ast}{\leftarrow} \Gamma_{X_2}(\chi_2) \end{displaymath} in $E Mod$. If the wrong-way map of this is [[orientation in generalized cohomology|orientable]] in $E$-cohomology then we may form its [[dual morphism]]/[[Umkehr map]] to obtain the corresponding ``[[index]]'' \begin{displaymath} \Gamma_{X_1}(\chi_1) \stackrel{(i_2)_! \xi}{\to} \Gamma_{X_2}(\chi_2) \end{displaymath} in $E Mod$. Identifying correspondences that yield the same ``[[index]]'' this way yields a presentation of bivariant cohomology by [[pure motive|motive]]-like structures. This is how (equivariant) [[bivariant K-theory]] is presented, at least over manifolds, see at \emph{\href{KK-theory#ReferencesInTermsOfCorrespondences}{KK-theory -- References -- In terms of correspondences}}. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[noncommutative motive]] \item [[motivic quantization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A general introduction to bivariant cohomology theories is in \begin{itemize}% \item [[William Fulton]], [[Robert MacPherson]], \emph{Categorical framework for the study of singular spaces}, Memoirs of the AMS, 243, 1981 \end{itemize} A general construction of bivariant theories on [[smooth manifolds]] from [[cohomology theories]] by geometric cycles, generalizing the construction of [[K-homology]] by [[Baum-Douglas geometric cycles]], is in \begin{itemize}% \item Martin Jakob, \emph{Bivariant theories for smooth manifolds}, Applied Categorical Structures 10 no. 3 (2002) \end{itemize} A similar construction for PL manifolds is in \begin{itemize}% \item S. Buoncristiano, C. P. Rourke and B. J. Sanderson, \emph{A geometric approach to homology theory}, Cambridge Univ. Press, Cambridge, Mass. (1976) \end{itemize} A study of bivariant theories in the context of motivic stable homotopy theory, and more generally in the broader framework of Grothendieck six functors formalism is in \begin{itemize}% \item F. Déglise, \emph{Bivariant theories in motivic stable homotopy}, (\href{https://arxiv.org/abs/1705.01528}{arXiv:1705.01528}) \end{itemize} References related to the discussion in \emph{\hyperlink{AxiomatizazionInHomotopyTheory}{Axiomatization in homotopy theory}} above include the following \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Twists of K-theory and TMF}, in Robert S. Doran, Greg Friedman, [[Jonathan Rosenberg]], \emph{Superstrings, Geometry, Topology, and $C^*$-algebras}, Proceedings of Symposia in Pure Mathematics \href{http://www.ams.org/bookstore-getitem/item=PSPUM-81}{vol 81}, American Mathematical Society (\href{http://arxiv.org/abs/1002.3004}{arXiv:1002.3004}) \item [[Jean-Louis Tu]], [[Ping Xu]], [[Camille Laurent-Gengoux]], \emph{Twisted K-theory of differentiable stacks} (\href{http://arxiv.org/abs/math/0306138}{arXiv:math/0306138}) \item [[Michael Joachim]], [[Stephan Stolz]], \emph{An enrichment of $KK$-theory over the category of symmetric spectra} M\"u{}nster J. of Math. 2 (2009), 143--182 (\href{http://www3.nd.edu/~stolz/KKenrich.pdf}{pdf}) \item [[Joost Nuiten]], \emph{[[schreiber:master thesis Nuiten|Cohomological quantization of local prequantum boundary field theory]]}, master thesis, August 2013 \item [[Urs Schreiber]], \emph{[[schreiber:Quantization via Linear homotopy types]]} (\href{http://arxiv.org/abs/1402.7041}{arXiv:1402.7041}) \end{itemize} [[!redirects bivariant cohomology theories]] [[!redirects bivariant homology theory]] [[!redirects bivariant homology theories]] [[!redirects bivariant cohomology]] [[!redirects twisted bivariant cohomology]] [[!redirects bivariant twisted cohomology]] \end{document}