\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bornological topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{remark_bornology_and_cohesiveness}{Remark: bornology and cohesiveness}\dotfill \pageref*{remark_bornology_and_cohesiveness} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{bornological topos} is a [[Grothendieck topos]] based on the concept of a bounded sequence and was proposed by [[William Lawvere]] in unpublished lectures in 1983 as a convenient category to do [[functional analysis]] in. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{C}$ be the category of [[countable set|countable sets]]. The \emph{bornological topos} $\mathcal{B}$ is the category of finite product preserving presheaves on $\mathcal{C}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item Equivalently, $\mathcal{B}$ is the topos of sheaves on $\mathcal{C}$ for the \emph{(finite) disjoint covering topology} with coverings the finite families $(X_i\to Y)_{i\in I}$ , such that $\sum_{i\in I} X_i\to Y$ is an isomorphism. \item In the work of Espa\~n{}ol et al., $\mathcal{B}$ is accessed as a subtopos of the topos of actions of the monoid of endomorphisms of $N$. \item $\mathcal{B}$ contains the category of (Kolmogorov) [[bornological set|bornological spaces]] as a full reflective subcategory (cf. Espa\~n{}ol-Lamb\'a{}n \hyperlink{EspanolLamban02}{2002}). \item The object $R_D$ of [[Dedekind real numbers]] of $\mathcal{B}$ is the space $l^\infty$ of bounded sequences of real numbers (cf. Espa\~n{}ol-M\'i{}nguez \hyperlink{Espanol-Minguez01}{2001}). \item `` \emph{The category of modules over the Dedekind real number object includes all the inductive limits of Banach spaces as a full subcategory, but at the same time is itself a Grothendieck AB5 Abelian category with the accompanying exactness properties.} '' (Lawvere \hyperlink{Lawvere08}{2008}, p.15). Thus `` \textbf{functional analysis becomes linear algebra} '' in the bornological topos (Lawvere \hyperlink{Lawvere94}{1994}, p.10). \end{itemize} \hypertarget{remark_bornology_and_cohesiveness}{}\subsection*{{Remark: bornology and cohesiveness}}\label{remark_bornology_and_cohesiveness} The bornological topos is the [[Gaeta topos]] on $\mathcal{C}$ and as such fits Lawvere's paradigm of doing abstract ``algebraic geometry'' (cf. Lawvere \hyperlink{Lawvere86}{1986}, p.17). In particular, the geometry and cohesiveness of the objects $X$ in $\mathcal{B}$ arises \emph{covariantly} from the basic figure shape of a `bounded' sequence $A$ via maps $A\to X$. That bornology provides in the context of functional analysis ``\emph{a more basic notion of cohesiveness}'' than the usual topological neighborhood concept and contravariant function algebra concept based on it is argued in Lawvere (\hyperlink{Lawvere97}{1997}, pp.3f). Although the bornological topos can be regarded as a cohesive category of ``spaces'' in a broad sense, it doesn't satisfy Lawvere's \emph{axiomatic cohesion} since it lacks the required left adjoint components functor $\Pi:\mathcal{B}\to Set$ (cf. Lawvere \hyperlink{Lawvere08}{2008}). \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[bornology]] \item [[Johnstone's topological topos|topological topos]] \item [[topos of recursive sets|recursive topos]] \item [[cohesion]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item L. Espa\~n{}ol, \emph{Extended real number object in the bornological topos} , talk CT07 Carvoeiro 2007. (\href{http://www.mat.uc.pt/~categ/ct2007/slides/espanol.pdf}{pdf-slides}) \item L. Espa\~n{}ol, L. Lamb\'a{}n, \emph{A tensor-hom adjunction in a topos related to vector topologies and bornologies} , Journal of Pure and Applied Algebra \textbf{154} (2000) pp.143-158. (doi:\href{http://dx.doi.org/10.1016/S0022-4049(99%2900188-7}{10.1016/S0022-4049(99)00188-7}) \item L. Espa\~n{}ol, L. Lamb\'a{}n, \emph{On bornologies, locales and toposes of M-sets} , Journal of Pure and Applied Algebra \textbf{176} (2002) pp.113--125. (doi:\href{http://dx.doi.org/10.1016/S0022-4049(02%2900047-6}{10.1016/S0022-4049(02)00047-6}) \item L. Espa\~n{}ol, M. C. M\'i{}nguez, \emph{Cortaduras Para $l^\infty$} , pp.375-390 in Espa\~n{}ol, Varona (eds.), \emph{Margarita Mathematica en Memoria de Jos\'e{} Javier (Chicho) Guadalupe Hern\'a{}ndez} , Universidad de La Rioja 2001. (\href{http://www.emis.de/proceedings/Chicho2001/Espanol-Minguez.pdf}{pdf}) \item [[F. William Lawvere]], \emph{Taking Categories Seriously}, Revista Colombiana de Matem\'a{}ticas \textbf{XX} (1986) pp.147-178. Reprinted as TAC Reprint no.8 (2005) pp.1-24. (\href{ftp://ftp.tac.mta.ca/tac/html/tac/reprints/articles/8/tr8.pdf}{pdf}) \item [[F. William Lawvere]], \emph{Qualitative Distinctions between some Toposes of Generalized Graphs} , Contemporary Mathematics \textbf{92} (1989) pp.261-299. (\href{https://books.google.com.au/books?id=VxAcCAAAQBAJ&pg=PA261}{Google Books link}; doi:\href{http://dx.doi.org/10.1090/conm/092/1003203}{10.1090/conm/092/1003203}) \item [[F. William Lawvere]], \emph{Cohesive Toposes and Cantor's `lauter Einsen'} , Phil. Math. \textbf{2} no.3 (1994) pp.5-15. \item [[F. William Lawvere]], \emph{Volterra's functionals and covariant cohesion of space} , in \emph{Proceedings of the May 1997 Meeting in Perugia} , Perugia Studies in Mathematics 1997. \item [[F. William Lawvere]], \emph{Cohesive Toposes: Combinatorial and Infinitesimal Cases}, Como Ms. 2008. (\href{http://comocategoryarchive.com/Archive/temporary_new_material/FWLawvere-Cohesive-Toposes-Como-January-2008.pdf}{pdf}) \end{itemize} [[!redirects Bornological topos]] \end{document}