\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{boundary conformal field theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum Field Theory}}\label{quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{results}{Results}\dotfill \pageref*{results} \linebreak \noindent\hyperlink{computer_scan_of_gepnermodel_compactifications}{Computer scan of Gepner-model compactifications}\dotfill \pageref*{computer_scan_of_gepnermodel_compactifications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_ktheory}{Relation to K-theory}\dotfill \pageref*{relation_to_ktheory} \linebreak \noindent\hyperlink{for_rational_cft_wzw_models_and_gepner_models}{For rational CFT, WZW models and Gepner models}\dotfill \pageref*{for_rational_cft_wzw_models_and_gepner_models} \linebreak \noindent\hyperlink{on_orbifolds}{On orbifolds}\dotfill \pageref*{on_orbifolds} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The study of [[conformal field theory]] on [[manifolds with boundary]], hence conformal [[boundary field theory]], is known as \emph{boundary conformal field theory} (often abbreviated as BCFT). For the special case of [[2d CFT]] understood as the [[quantum field theory]] on the [[worldsheet]] of [[strings]], boundary conformal field theory is the key ingredient of [[perturbative string theory]] with prescribed [[boundary conditions]] for the [[open strings]]. From the [[target spacetime]]-perspective these [[boundary conditions]] are interpreted as the [[D-branes]] that the [[open strings]] may ``end on''. In this way 2d BCFT can serve to give an [[algebra|algebraic]] definition of [[D-branes]], independent of or complementary to their incarnation in the [[target space|target]]-[[spacetime]] [[geometry]]. In particular [[fractional D-branes]] may be described this way as boundary conditions for the [[2d CFTs]] describing [[open strings]] propagating in [[orbifolds]]. A key tool of BCFT is the \emph{boundary state} formalism, where one interprets [[boundary conditions]] for the [[open string]] as [[coherent states]] of the corresponding [[closed string]] [[2d CFT]]. The physical interpretation of this algebraic fact is that the [[D-brane]], being [[mass|massive]] (see also at \emph{[[black brane]]}) emits and absorbs [[gravitons]], which, in [[string theory]], are excitations of the [[closed string]]. It has been argued that, therefore, for [[sigma-model]] [[2d CFT]]s the classification of [[equivalence classes]] of BCFT boundary states under [[renormalization group flow]] should reproduce the expected classification of [[D-branes]] by the ([[equivariant K-theory|equivariant]], [[twisted K-theory]]) [[topological K-theory]] of the [[target spacetime]] (\hyperlink{Moore03}{Moore 03, section 3}). While this gives, in principle, a precise algebraic definition of [[D-brane charge]] from the [[worldsheet]]-perspective, in practice it is hard to follow the [[renormalization group flow]] of the boundary states. The proposal has been checked in some special cases (e.g. \hyperlink{BraunSchaeferNameki05}{Braun \& Schaefer-Nameki 05}). Other authors reported some discrepancies (\hyperlink{QuirozStefanski01}{Quiroz-Stefanski 01}) Specifically for [[fractional D-branes]] at $G$-[[orbifold]] [[singularities]] the relevant boundary states are [[sums]] of boundary states for each ``$g$-twisted sector'' of the [[closed string]] [[2d CFT]], consisting of those string configurations that are closed in the [[covering space]] up to the [[action]] of the element $g \in G$: \begin{quote}% graphics grabbed from \hyperlink{BCR00}{BCR 00} \end{quote} Here the [[coefficient]] of the $g$-twisted sector in the total boundary state is proprotional to the value $\chi_V(g)$ of the [[character]] $\chi_V$ of some $G$-[[representation]] $V \in R_{\mathbb{C}}(G) = KU_G(\ast)$ (e.g. \hyperlink{RecknagelSchomerus13}{Recknagel-Schomerus 13 (4.102)}). This makes it plausible that the [[RG-flow]]-[[equivalence classes]] of the boundary states for [[fractional D-branes]] do coincide with the [[equivariant K-theory]] $KU_G(\ast) = R_{\mathbb{C}}(G)$ of the [[orbifold]] singularity (the [[representation ring]] of $G$). \begin{quote}% But maybe this has not yet been actually proven? \end{quote} \hypertarget{results}{}\subsection*{{Results}}\label{results} There are some mistakes in the literature. A clean account is in \hyperlink{FuchsSchweigertWalcher00}{Fuchs-Schweigert-Walcher 00}, \hyperlink{FuchsKasteLercheLutkenSchweigert00}{Fuchs-Kaste-Lerche-Lutken-Schweigert 00} \hypertarget{computer_scan_of_gepnermodel_compactifications}{}\subsection*{{Computer scan of Gepner-model compactifications}}\label{computer_scan_of_gepnermodel_compactifications} Discussion of [[string phenomenology]] of [[intersecting D-brane models]] [[KK-compactification|KK-compactified]] with non-geometric [[fibers]] such that the would-be string [[sigma-models]] with these [[target spaces]] are in fact [[Gepner models]] (in the sense of \emph{\href{https://www.physicsforums.com/insights/spectral-standard-model-string-compactifications/}{Spectral Standard Model and String Compactifications}}) is in (\hyperlink{DijkstraHuiszoonSchellekens04a}{Dijkstra-Huiszoon-Schellekens 04a}, \hyperlink{DijkstraHuiszoonSchellekens04b}{Dijkstra-Huiszoon-Schellekens 04b}): \begin{quote}% A plot of [[standard model of particle physics|standard model]]-like [[coupling constants]] in a computer scan of [[Gepner model]]-[[KK-compactification]] of [[intersecting D-brane models]] according to \hyperlink{DijkstraHuiszoonSchellekens04b}{Dijkstra-Huiszoon-Schellekens 04b}. The blue dot indicates the couplings in $SU(5)$-[[GUT]] theory. The faint lines are NOT drawn by hand, but reflect increased density of Gepner models as seen by the computer scan. \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[boundary field theory]] \item [[fractional brane]], [[permutation brane]] \end{itemize} [[!include field theory with boundaries and defects - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The boundary state formalism in BCFT is due to \begin{itemize}% \item C. G. Callan, C. Lovelace, C. R. Nappi and S. A. Yost, \emph{Adding holes and crosscaps to the superstring}, Nucl. Phys. B 293 (1987) 83 () \item C. G. Callan, C. Lovelace, C. R. Nappi and S. A. Yost, \emph{Loop corrections to superstring equations of motion}, Nucl. Phys. B308 (1988) 221 (\href{https://www.researchgate.net/profile/Scott_Yost/publication/222468211_Loop_Corrections_to_Superstring_Equations_of_Motion/links/5a54d5eda6fdccd72f5b4583/Loop-Corrections-to-Superstring-Equations-of-Motion.pdf}{pdf}) \item N. Ishibashi, \emph{Boundary and Crosscap States in Conformal Field Theories}, Mod. Phys. Lett. A4(1989) 251 (\href{https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/072/20072844.pdf#page=125}{pdf}) \item N. Ishibashi and T. Onogi, \emph{Open string model building}, Nucl. Phys. B318(1989) 239 () \item \hyperlink{DixonFriedanMartinecShenker87}{Dixon-Friedan-Martinec-Shenker 87} \end{itemize} See also \begin{itemize}% \item [[Andreas Recknagel]], [[Volker Schomerus]], \emph{Boundary Deformation Theory and Moduli Spaces of D-Branes}, Nucl.Phys. B545 (1999) 233-282 (\href{https://arxiv.org/abs/hep-th/9811237}{arXiv:hep-th/9811237}) \end{itemize} A textbook account is in \begin{itemize}% \item [[Andreas Recknagel]], [[Volker Schomerus]], \emph{Boundary Conformal Field Theory and the Worldsheet Approach to D-branes}, Cambridge 2013 (\href{http://inspirehep.net/record/1308990}{spire:1308990}) \end{itemize} \hypertarget{relation_to_ktheory}{}\subsubsection*{{Relation to K-theory}}\label{relation_to_ktheory} The suggestion that [[renormalization group flow]]-[[equivalence classes]] of boundary states in 2d BCFT should realize the expected classification of [[D-brane charge]] in ([[equivariant K-theory|equivariant]]) [[topological K-theory]] apparntly goes back to \begin{itemize}% \item [[Gregory Moore]], section 3 of \emph{K-Theory from a physical perspective} (\href{https://arxiv.org/abs/hep-th/0304018}{arXiv:hep-th/0304018}) \end{itemize} This has been checked in examples in \begin{itemize}% \item [[Volker Braun]], Sakura Schafer-Nameki, \emph{D-Brane Charges in Gepner Models}, J.Math.Phys. 47 (2006) 092304 (\href{https://arxiv.org/abs/hep-th/0511100}{arXiv:hep-th/0511100}) \item [[Igor Kriz]], Leopoldo A. Pando Zayas, Norma Quiroz, \emph{Comments on D-branes on Orbifolds and K-theory}, Int.J.Mod.Phys.A23:933-974, 2008 (\href{https://arxiv.org/abs/hep-th/0703122}{arXiv:hep-th/0703122}) \end{itemize} A mismatch was claimed in \begin{itemize}% \item \hyperlink{QuirozStefanski01}{Quiroz-Stefanski 01} \end{itemize} \hypertarget{for_rational_cft_wzw_models_and_gepner_models}{}\subsubsection*{{For rational CFT, WZW models and Gepner models}}\label{for_rational_cft_wzw_models_and_gepner_models} For [[rational CFT]], specifically [[Gepner models]] and [[WZW models]] \begin{itemize}% \item [[Ilka Brunner]], [[Michael Douglas]], Albion Lawrence, Christian Romelsberger, \emph{D-branes on the Quintic}, JHEP 0008 (2000) 015 (\href{https://arxiv.org/abs/hep-th/9906200}{arXiv:hep-th/9906200}) \item [[Jürgen Fuchs]], [[Christoph Schweigert]], J. Walcher, \emph{Projections in string theory and boundary states for Gepner models}, Nucl.Phys. B588 (2000) 110-148 (\href{https://arxiv.org/abs/hep-th/0003298}{arXiv:hep-th/0003298}) (with emphasis on [[GSO projections]]) \item [[Jürgen Fuchs]], P. Kaste, [[Wolfgang Lerche]], C. Lutken, [[Christoph Schweigert]], J. Walcher, \emph{Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3}, Nucl.Phys.B598:57-72, 2001 (\href{https://arxiv.org/abs/hep-th/0007145}{arXiv:hep-th/0007145}) (with emphasis on [[gauge enhancement]] on coincident D-branes) \item Sergei E. Parkhomenko, \emph{Free Field Construction of D-Branes in Rational Models of CFT and Gepner Models} (\href{https://arxiv.org/abs/0802.3445}{arXiv:0802.3445}) \item [[Giovanni Felder]], [[Jürg Fröhlich]], [[Jürgen Fuchs]], [[Christoph Schweigert]], \emph{The geometry of WZW branes} (\href{https://arxiv.org/abs/hep-th/9909030}{arXiv:hep-th/9909030}) \item \hyperlink{BraunSchaeferNameki05}{Braun \& Schaefer-Nameki 05} \end{itemize} \hypertarget{on_orbifolds}{}\subsubsection*{{On orbifolds}}\label{on_orbifolds} Discussion specifically concerning [[fractional D-branes]] on [[orbifolds]] includes \begin{itemize}% \item [[Lance Dixon]], [[Daniel Friedan]], [[Emil Martinec]], [[Stephen Shenker]], \emph{The conformal field theory of orbifolds}, Nucl. Phys. B 282 (1987) 13. () \item Diaconescu, [[Jaume Gomis]], \emph{Fractional Branes and Boundary States in Orbifold Theories}, JHEP 0010 (2000) 001 (\href{https://arxiv.org/abs/hep-th/9906242}{arXiv:hep-th/9906242}) \item M. Billo', B. Craps, F. Roose, \emph{Orbifold boundary states from Cardy's condition}, JHEP 0101:038, 2001 (\href{https://arxiv.org/abs/hep-th/0011060}{arXiv:hep-th/0011060}) \item N. Quiroz, [[Bogdan Stefanski]] Jr, \emph{Dirichlet Branes on Orientifolds}, Phys.Rev. D66 (2002) 026002 (\href{https://arxiv.org/abs/hep-th/0110041}{arXiv:hep-th/0110041}) \item T.P.T. Dijkstra, L. R. Huiszoon, [[Bert Schellekens]], \emph{Chiral Supersymmetric Standard Model Spectra from Orientifolds of Gepner Models}, Phys.Lett. B609 (2005) 408-417 (\href{https://arxiv.org/abs/hep-th/0403196}{arXiv:hep-th/0403196}) \item T.P.T. Dijkstra, L. R. Huiszoon, [[Bert Schellekens]], \emph{Supersymmetric Standard Model Spectra from RCFT orientifolds}, Nucl.Phys.B710:3-57,2005 (\href{https://arxiv.org/abs/hep-th/0411129}{arXiv:hep-th/0411129}) \item Jaydeep Majumder, Subir Mukhopadhyay, Koushik Ray, \emph{Fractional Branes in Non-compact Type IIA Orientifolds}, JHEP0611:008, 2006 (\href{https://arxiv.org/abs/hep-th/0602135}{arXiv:hep-th/0602135}) \end{itemize} [[!redirects boundary conformal field theories]] [[!redirects boundary CFT]] [[!redirects boundary CFTs]] [[!redirects BCFT]] [[!redirects BCFTs]] [[!redirects boundary state]] [[!redirects boundary states]] [[!redirects twisted sector]] [[!redirects twisted sectors]] \end{document}