\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bracket type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_type_theory}{In type theory}\dotfill \pageref*{in_type_theory} \linebreak \noindent\hyperlink{DefinitionInHomotopyTypeTheory}{In homotopy type theory}\dotfill \pageref*{DefinitionInHomotopyTypeTheory} \linebreak \noindent\hyperlink{semantics}{Semantics}\dotfill \pageref*{semantics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are various different paradigms for the interpretation of [[predicate logic]] in [[type theory]]. In ``logic-enriched type theory'', there is a separate class of ``[[propositions]]'' from the class of ``[[types]]''. But we can also identify propositions with particular types. In the \emph{[[propositions as types]]}-paradigm, every proposition is a type, and also every type is identified with a proposition (the proposition that it is an [[inhabited type]]). By contrast, in the paradigm that may be called \href{propositions+as+types#PropositionsAsSomeTypes}{propositions as some types}, every proposition is a type, but not every type is a proposition. The types which are propositions are generally those which ``have at most one inhabitant'' --- in [[homotopy type theory]] this is called being of [[h-level 1]] or being a [[homotopy n-type|(-1)-type]]. This paradigm is often used in the [[categorical semantics]] of type theory, such as the [[internal logic]] of various kinds of categories. Under ``propositions as types'', all type-theoretic operations represent corresponding logical operations ([[dependent sum]] is the [[existential quantifier]], [[dependent product]] the [[universal quantifier]], and so on). However, under ``propositions as some types'', not every such operation preserves the class of propositions; this is particularly the case for [[dependent sum]] and [[disjunction]]([[or]]). Thus, in order to obtain the correct logical operations, we need to reflect these constructions back into propositions somehow, finding the ``underlying proposition'', corresponding to the [[truncated|(-1)-truncation]]/[[h-level 1|h-level 1-projection]]. This operation in type theory is called the \textbf{bracket type} (when denoted $[A]$); in [[homotopy type theory]] it can be identified with the [[higher inductive type]] $isInhab$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_type_theory}{}\subsubsection*{{In type theory}}\label{in_type_theory} (\ldots{}) \hypertarget{DefinitionInHomotopyTypeTheory}{}\subsubsection*{{In homotopy type theory}}\label{DefinitionInHomotopyTypeTheory} We discuss the definition in [[homotopy type theory]]. For $A$ a type, the \textbf{support} of $A$ denoted $supp(A)$ or $isInhab(A)$ or $\tau_{-1} A$ or $\| A \|_{-1}$ or $\| A \|$ or, lastly, $[A]$, is the [[higher inductive type]] defined by the two constructors \begin{displaymath} a \colon A \;\vdash \; isinhab(a) \colon supp(A) \end{displaymath} \begin{displaymath} x \colon supp(A) \;,\; y \colon supp(A) \;\vdash \; inpath(x,y) \colon (x = y) \,, \end{displaymath} where in the last [[sequent]] on the right we have the [[identity type]]. (\hyperlink{Voevodsky}{Voevodsky}, \hyperlink{HoTTLibrary}{HoTTLibrary}) This says that $supp(A)$ is the type which is [[universal property|universal]] with the property that the [[terms]] of $A$ map to it and that any two term of $A$ become [[equivalence in homotopy type theory|equivalent]] in $supp(A)$. In [[Agda]] [[syntax]] this is \begin{verbatim}data isinhab {i : Level} (A : Set i) : Set i where inhab : A → isinhab A inhab-path : (x y : isinhab A) → x ≡ y\end{verbatim} The [[recursion principle]] for $supp(A)$ says that if $B$ is a [[mere proposition]] and we have $f: A \to B$, then there is an induced $g : supp(A) \to B$ such that $g(isinhab(a)) \equiv f(a)$ for all $a:A$. In other words, any mere proposition which follows from (the inhabitedness of) $A$ already follows from $supp(A)$. Thus, $supp(A)$, as a mere proposition, contains no more information than the inhabitedness of $A$. For more see at \emph{[[n-truncation modality]]}. \hypertarget{semantics}{}\subsection*{{Semantics}}\label{semantics} One presentation of the [[internal logic|internal]] [[type theory]] of [[regular categories]] consists of [[dependent type theory]] with the [[unit type]], [[strong extensional equality types]], strong [[dependent sums]], and bracket types. (The internal logic of a regular category can alternatively be presented as a [[logic-enriched type theory]].) The [[semantics]] of bracket types in a [[regular category]] $C$ is as follows. A [[dependent type]] (a type in [[context]] $X$) \begin{displaymath} x\colon X \vdash A(x) \colon Type \end{displaymath} is interpreted in $C$ as an arbitrary [[morphism]] \begin{displaymath} \itexarray{ A \\ \downarrow \\ X } \,. \end{displaymath} The corresponding bracket type \begin{displaymath} x\colon X \vdash [A(x)] \colon Type \end{displaymath} is interpreted then as the [[image]]-[[(epi, mono) factorization system|factorization]] \begin{displaymath} \itexarray{ A &&\to&& [A] & := im(A \to X) \\ & \searrow && \swarrow \\ && X \,. } \end{displaymath} Therefore $[A] \to X$ is a [[monomorphism]], and hence the interpretation of a [[proposition]] about the elements of $X$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[image]], [[inhabited type]] \item [[n-truncation modality]] \end{itemize} [[!include homotopy n-types - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The original articles are \begin{itemize}% \item M.E. Maietti, \emph{The Type Theory of Categorical Universes} PhD thesis, Universit\`a{} Delgi Studi di Padova, 1998 \end{itemize} (which speaks of ``mono types'') and \begin{itemize}% \item [[Frank Pfenning]], \emph{Intensionality, extensionality, and proof irrelevance in modal type theory}, In Proceedings of the 16th Annual Symposium on Logic in Computer Science (LICS'01), June 2001. \item [[Steve Awodey]], [[Andrej Bauer]], \emph{Propositions as $[$Types$]$}, Journal of Logic and Computation. Volume 14, Issue 4, August 2004, pp. 447-471 (\href{http://andrej.com/papers/brackets_letter.pdf}{pdf}) \end{itemize} Exposition in the context of [[homotopy type theory]] is in \begin{itemize}% \item [[Mike Shulman]], \emph{Minicourse on homotopy type theory} (2012) (\href{http://www.sandiego.edu/~shulman/hottminicourse2012/}{web}) \end{itemize} Formalization in the context of homotopy type theory is in \begin{itemize}% \item [[Vladimir Voevodsky]], \emph{The hProp version of the ``inhabited'' construction.} (\href{http://www.math.ias.edu/~vladimir/Foundations_library/hProp.html#lab140}{web}) \end{itemize} \begin{itemize}% \item [[Coq]] \href{https://github.com/HoTT/HoTT/tree/master/Coq}{HoTT library}, \emph{\href{https://github.com/HoTT/HoTT/blob/master/Coq/HIT/IsInhab.v}{IsInhab.v}} \end{itemize} Discussion of this in the more general context of truncations is in \begin{itemize}% \item [[Guillaume Brunerie]], \emph{Truncations and truncated higher inductive types} (\href{http://homotopytypetheory.org/2012/09/16/truncations-and-truncated-higher-inductive-types/}{web}) \end{itemize} [[!redirects bracket types]] [[!redirects propositions as some types]] [[!redirects propositional truncation]] [[!redirects propositional truncations]] [[!redirects squash type]] [[!redirects squash types]] [[!redirects isInhab]] \end{document}