\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{braid group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{geometric_definition}{Geometric definition}\dotfill \pageref*{geometric_definition} \linebreak \noindent\hyperlink{grouptheoretic_definition}{Group-theoretic definition}\dotfill \pageref*{grouptheoretic_definition} \linebreak \noindent\hyperlink{artin_presentation}{Artin presentation}\dotfill \pageref*{artin_presentation} \linebreak \noindent\hyperlink{in_terms_of_automorphisms_on_free_groups}{In terms of automorphisms on free groups}\dotfill \pageref*{in_terms_of_automorphisms_on_free_groups} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_moduli_space_of_monopoles}{Relation to moduli space of monopoles}\dotfill \pageref*{relation_to_moduli_space_of_monopoles} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{surface_braid_groups}{Surface braid groups}\dotfill \pageref*{surface_braid_groups} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_moduli_space_of_monopoles_2}{Relation to moduli space of monopoles}\dotfill \pageref*{relation_to_moduli_space_of_monopoles_2} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{braid group} $Br_n$ is the [[group]] whose elements are [[isotopy]] classes of $n$ [[dimension|1-dimensional]] \emph{braids} running vertically in 3-dimensional [[Cartesian space]], the group operation being their concatenation. Here a \emph{braid} with $n$ strands is thought of as $n$ pieces of string joining $n$ points at the top of the diagram with $n$-points at the bottom. [[3-strand-braid-1-SVG]] (This is a picture of a 3-strand braid.) We can transform / `isotope' these braid diagrams just as we can transform [[knot diagrams]], again using [[Reidemeister moves]]. The `isotopy' classes of braid diagrams form a group in which the composition is obtained by putting one diagram above another. The identity consists of $n$ vertical strings, so the inverse is obtained by turning a diagram upside down: This is the inverse of the first 3-braid we saw. There are useful [[group presentations]] of the braid groups. We will return later to the interpretation of the [[generators and relations]] in terms of diagrams. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{geometric_definition}{}\subsubsection*{{Geometric definition}}\label{geometric_definition} Let $C_n \hookrightarrow \mathbb{C}^n$ be the space of [[configuration space of points|configurations of n points]] in the [[complex plane]], whose elements are those [[n-tuples]] $(z_1, \ldots, z_n)$ such that $z_i \neq z_j$ whenever $i \neq j$. The [[symmetric group]] $S_n$ acts on $C_n$ by permuting coordinates. Let $C_n/S_n$ be the orbit space (the space of $n$-element subsets of $\mathbb{C}$ if one likes), and let $[z_1, \ldots, z_n]$ be the image of $(z_1, \ldots, z_n)$ under the quotient $\pi: C_n \to C_n/S_n$. We take $p = (1, 2, \ldots, n)$ as basepoint for $C_n$, and $[p] = [1, 2, \ldots n]$ as basepoint for $C_n/S_n$. \begin{defn} \label{}\hypertarget{}{} The \emph{braid group} $Br_n$ is the [[fundamental group]] $\pi_1(C_n/S_n, [p])$. The \emph{pure braid group} $P_n$ is $\pi_1(C_n, p)$. \end{defn} Evidently a braid $\beta$ is represented by a path $\alpha: I \to C_n/S_n$ with $\alpha(0) = [p] = \alpha(1)$. Such a path may be uniquely lifted through the covering projection $\pi: C_n \to C_n/S_n$ to a path $\tilde{\alpha}$ such that $\tilde{\alpha}(0) = p$. The end of the path $\tilde{\alpha}(1)$ has the same underlying subset as $p$ but with coordinates permuted: $\tilde{\alpha}(1) = (\sigma(1), \sigma(2), \ldots, \sigma(n))$. Thus the braid $\beta$ is exhibited by $n$ non-intersecting strands, each one connecting an $i$ to $\sigma(i)$, and we have a map $\beta \mapsto \sigma$ appearing as the quotient map of an exact sequence \begin{displaymath} 1 \to P_n \to Br_n \to S_n \to 1 \end{displaymath} which is part of a long exact homotopy sequence corresponding to the fibration $\pi: C_n \to C_n/S_n$. \hypertarget{grouptheoretic_definition}{}\subsubsection*{{Group-theoretic definition}}\label{grouptheoretic_definition} \hypertarget{artin_presentation}{}\paragraph*{{Artin presentation}}\label{artin_presentation} The \textbf{Artin braid group}, $Br_{n+1}$, defined using $n+1$ strands is a [[group]] given by \begin{itemize}% \item generators: $y_i$, $i = 1, \ldots, n$; \item relations: \begin{itemize}% \item $r_{i,j} \equiv y_i y_j y_i^{-1} y_j^{-1}$ for $i+1 \lt j$ \item $r_{i,i+1}\equiv y_i y_{i+1} y_i y_{i+1}^{-1} y_i^{-1} y_{i+1}^{-1}$ for $1 \leq i \lt n$. \end{itemize} \end{itemize} \hypertarget{in_terms_of_automorphisms_on_free_groups}{}\paragraph*{{In terms of automorphisms on free groups}}\label{in_terms_of_automorphisms_on_free_groups} The braid group $B_n$ may be alternatively described as the [[mapping class group]] of a 2-disk $D^2$ with $n$ punctures (call it $X_n$). Meanwhile, the [[fundamental group]] $\pi_1(X_n)$ (with basepoint on the boundary) is a [[free group]] $F_n$ on $n$ generators; the functoriality of $\pi_1$ implies we have an induced homomorphism \begin{displaymath} Aut(X_n) \to Aut(\pi_1(X_n)) = Aut(F_n). \end{displaymath} If an automorphism $\phi: X_n \to X_n$ is isotopic to the identity, then of course $\pi_1(\phi)$ is trivial, and so the homomorphism factors through the quotient $MCG(X_n) = Aut(X_n)/Aut_0(X)$, so we get a homomorphism \begin{displaymath} B_n = MCG(X_n) \to Aut(F_n) \end{displaymath} and this turns out to be an injection. Explicitly, the generator $y_i$ used in the Artin presentation above is mapped to the automorphism $\sigma_i$ on the free group on $n$ generators $x_1, \ldots, x_n$ defined by \begin{displaymath} \sigma_i(x_i) = x_{i+1}, \sigma_i(x_{i+1}) = x_{i+1}^{-1} x_i x_{i+1}, \; \else\; \sigma(x_j) = x_j. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_moduli_space_of_monopoles}{}\subsubsection*{{Relation to moduli space of monopoles}}\label{relation_to_moduli_space_of_monopoles} \begin{prop} \label{ModuliSpaceOfkMonopolesStablyWeakHomotopyEquivbalentToClassifyingSpaceOfBraids}\hypertarget{ModuliSpaceOfkMonopolesStablyWeakHomotopyEquivbalentToClassifyingSpaceOfBraids}{} \textbf{([[moduli space of monopoles]] is [[stable weak homotopy equivalence|stably weak homotopy equivalent]] to [[classifying space]] of [[braid group]])} For $k \in \mathbb{N}$ there is a [[stable weak homotopy equivalence]] between the [[moduli space of k monopoles]] \eqref{ModuliSpaceOfkInstantons} and the [[classifying space]] of the [[braid group]] $Braids_{2k}$ on $2 k$ strands: \begin{displaymath} \Sigma^\infty \mathcal{M}_k \;\simeq\; \Sigma^\infty Braids_{2k} \end{displaymath} \end{prop} (\hyperlink{CohenCohenMannMilgram91}{Cohen-Cohen-Mann-Milgram 91}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The first few examples for low values of $n$: \begin{example} \label{}\hypertarget{}{} By default, $Br_1$ has no generators and no relations, so is trivial. \end{example} \begin{example} \label{}\hypertarget{}{} By default, $Br_2$ has one generator and no relations, so is infinite cyclic. \end{example} \begin{example} \label{}\hypertarget{}{} (We will simplify notation writing $u = y_1$, $v = y_2$.) This then has presentation \begin{displaymath} \mathcal{P} = ( u,v : r \equiv u v u v^{-1} u^{-1} v^{-1}). \end{displaymath} It is also the `trefoil group', i.e., the fundamental group of the complement of a [[trefoil knot]]. \end{example} \begin{example} \label{}\hypertarget{}{} Simplifying notation as before, we have generators $u,v,w$ and relations \begin{itemize}% \item $r_u \equiv v w v w^{-1} v^{-1} w^{-1}$, \item $r_v \equiv u w u^{-1} w^{-1}$, \item $r_w \equiv u v u v^{-1} u^{-1} v^{-1}$. \end{itemize} \end{example} \hypertarget{surface_braid_groups}{}\subsection*{{Surface braid groups}}\label{surface_braid_groups} In terms of the geometric definition above, it is possible to consider configurations of points on surfaces other than the plane, which gives rise to the more general notion of a \emph{surface braid group}. For example, the \textbf{Hurwitz braid group} (or \textbf{sphere braid group}) comes from considering configurations of points on the [[2-sphere]] $S^2$. Algebraically, the Hurwitz braid group $H_{n+1}$ has all of the generators and relations of the Artin braid group $Br_{n+1}$, plus one additional relation: \begin{displaymath} y_1 y_2 \dots y_{n-1} y_n^2 y_{n-1}\dots y_2 y_1 \end{displaymath} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[braid group statistics]] \item [[braid category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Classical references are \begin{itemize}% \item [[Joan S. Birman]], \emph{Braids, links, and mapping class groups}, Princeton Univ Press, 1974. \item [[R. H. Fox]], L. Neuwirth, \emph{The braid groups}, Math. Scand. \textbf{10} (1962) pp.119-126. \href{http://www.mscand.dk/article.php?id=1624}{pdf}, \href{http://www.ams.org/mathscinet-getitem?mr=150755}{MR150755} \end{itemize} A recent monograph is \begin{itemize}% \item C. Kassel, V. Turaev, \emph{Braid Groups} , GTM \textbf{247} Springer Heidelberg 2008. \end{itemize} See also \begin{itemize}% \item Wikipedia: \emph{\href{http://en.wikipedia.org/wiki/Braid_group}{Braid group}} \end{itemize} For orderings of the braid group see \begin{itemize}% \item [[Patrick Dehornoy]], \emph{Braid groups and left distributive operations} , Transactions AMS \textbf{345} no.1 (1994) pp.115--150. \item H. Langmaack, \emph{Verbandstheoretische Einbettung von Klassen unwesentlich verschiedener Ableitungen in die Zopfgruppe} , Computing \textbf{7} no.3-4 (1971) pp.293-310. \end{itemize} \hypertarget{relation_to_moduli_space_of_monopoles_2}{}\subsubsection*{{Relation to moduli space of monopoles}}\label{relation_to_moduli_space_of_monopoles_2} On [[moduli spaces of monopoles]] related to [[braid groups]]: \begin{itemize}% \item [[Fred Cohen]], [[Ralph Cohen]], B. M. Mann, R. J. Milgram, \emph{The topology of rational functions and divisors of surfaces}, Acta Math (1991) 166: 163 (\href{https://doi.org/10.1007/BF02398886}{doi:10.1007/BF02398886}) \item [[Ralph Cohen]], John D. S. Jones \emph{Monopoles, braid groups, and the Dirac operator}, Comm. Math. Phys. Volume 158, Number 2 (1993), 241-266 (\href{https://projecteuclid.org/euclid.cmp/1104254240}{euclid:cmp/1104254240}) \end{itemize} category: knot theory [[!redirects braid groups]] [[!redirects braid]] [[!redirects braids]] [[!redirects pure braid]] [[!redirects pure braids]] [[!redirects Artin braid group]] [[!redirects Hurwitz braid group]] [[!redirects surface braid group]] \end{document}