\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{brane} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{phyics}{}\paragraph*{{Phyics}}\label{phyics} [[!include physicscontents]] \begin{quote}% This article is about the general concept of branes. For more specific details see also also at \emph{[[super p-brane]]}, \emph{[[black brane]]} and \emph{[[D-brane]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Dbranes}{Boundary conditions or D-branes}\dotfill \pageref*{Dbranes} \linebreak \noindent\hyperlink{in_terms_of_the_algebraic_data_of_the_qft_on_the_worldvolume}{In terms of the algebraic data of the QFT on the worldvolume}\dotfill \pageref*{in_terms_of_the_algebraic_data_of_the_qft_on_the_worldvolume} \linebreak \noindent\hyperlink{in__rational_cft}{In $2d$ rational CFT}\dotfill \pageref*{in__rational_cft} \linebreak \noindent\hyperlink{in__tft}{In $2d$ TFT}\dotfill \pageref*{in__tft} \linebreak \noindent\hyperlink{in_terms_of_geometric_data_of_the_model_background}{In terms of geometric data of the $\sigma$-model background}\dotfill \pageref*{in_terms_of_geometric_data_of_the_model_background} \linebreak \noindent\hyperlink{fundamental_or_model_branes}{Fundamental or $\sigma$-model branes}\dotfill \pageref*{fundamental_or_model_branes} \linebreak \noindent\hyperlink{black_branes}{Black branes}\dotfill \pageref*{black_branes} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{worldvolume_theories}{Worldvolume theories}\dotfill \pageref*{worldvolume_theories} \linebreak \noindent\hyperlink{the_superbrane_scan}{The super-brane scan}\dotfill \pageref*{the_superbrane_scan} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{prehistory}{Prehistory}\dotfill \pageref*{prehistory} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{boundary_conditions__dbranes}{Boundary conditions / D-branes}\dotfill \pageref*{boundary_conditions__dbranes} \linebreak \noindent\hyperlink{fundamental_branes}{Fundamental branes}\dotfill \pageref*{fundamental_branes} \linebreak \noindent\hyperlink{branes_ending_on_branes}{Branes ending on branes}\dotfill \pageref*{branes_ending_on_branes} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term \emph{brane} in formal high energy [[physics]], and in particular in [[string theory]], refers to entities that one thinks of as physical objects that generalize the notion \emph{point particles} to higher dimensional objects. The term derives from the word \emph{membrane} that was originally used to describe 2-dimensional ``particles''. When the need was felt to speak also about 3-, 4- and higher dimensional such ``particles'' the usage ``3-brane'', ``4-brane'' etc. was introduced. Ordinary particles would be 0-branes in this counting, the strings in [[string theory]] would be 1-branes and membranes themselves 2-branes. Generally, there are two different incarnations of branes \begin{enumerate}% \item \textbf{fundamental $p$-branes} (as in ``[[fundamental particle]]''): these are given by [[sigma-models]] on $(p+1)$-dimensional [[worldvolumes]] describing propagation of single $p$-dimensional objects on certain [[target spacetimes]]. If these sigma-models are required to exhibit manifest [[target spacetime]] [[supersymmetry]], then they are [[Green-Schwarz sigma models]], which are classified by a ``[[brane scan]]'' in [[super L-infinity algebra]] [[L-infinity algebra cohomology|cohomology]]; \item \textbf{[[black branes|black p-branes]]} (as in ``[[black hole]]''): these are [[soliton|solitonic]] solutions to [[field theories]], typically [[supergravity]] theories, with [[singularities]] of [[dimension]] $(p+1)$. In analogy to how a [[charged black hole]] ($p = 0$) [[source|sources]] an [[electromagnetic field]] with [[field strength]] 2-form, so black $p$-branes source $(p+2)$-form [[higher gauge fields]] and hence appear in those [[supergravity]] theories where such exists. \end{enumerate} The idea is that these two concepts match where a [[condensate]] of fundamental $p$-branes turns into a black $p$-branes. Indeed, the classical [[no-hair theorem]] matches [[fundamental particles]] (i.e. 0-branes) characterized (via the [[Wigner classification]]) by just their [[mass]], electromagnetic [[charge]] and [[angular momentum]] to [[black hole]] solutions of pure vacuum gravity. Accordingly, it is an old suggestion (\hyperlink{EinsteinInfeldHoffmann39}{Einstein-Infeld-Hoffmann 39}) that fundamental particles could be identified with singular solutions of vacuum gravity. This matching generalizes to higher dimensional $p$-branes in higher dimensional [[supergravity]] and there is an exact correspondence between fundamental [[Green-Schwarz super p-branes]] and extremal [[BPS solutions|BPS]] black brane solutions. In [[string theory]] there is a third incarnation of branes, known as \begin{itemize}% \item \textbf{[[D-branes]]}: these are the admissible [[boundary conditions]] for the 2-dimensional [[sigma models]] describing [[open strings]]. \end{itemize} One envisions that as one passes from [[perturbative string theory]] to the [[non-perturbative effect|non-perturbative]] version of the theory (``[[M-theory]]'') these [[D-branes]] show [[back-reaction]] and turn into the [[UV-completion]] of the [[black branes]] seen in the [[supergravity]] [[effective field theory]]. This relation is key in the microscopic computation of [[black hole entropy]] for [[black holes in string theory]]. \hypertarget{Dbranes}{}\subsubsection*{{Boundary conditions or D-branes}}\label{Dbranes} Some words on [[D-branes]] \hypertarget{in_terms_of_the_algebraic_data_of_the_qft_on_the_worldvolume}{}\paragraph*{{In terms of the algebraic data of the QFT on the worldvolume}}\label{in_terms_of_the_algebraic_data_of_the_qft_on_the_worldvolume} An abstractly defined $n$-dimensional [[quantum field theory]] is a consistent assignment of [[state]]-space and correlators to $n$-dimensional [[cobordisms]] with certain structure (topological structure, conformal structure, Riemannian structure, etc. see [[FQFT]]/[[AQFT]]). In an \emph{open-closed QFT} the cobordisms are allowed to have boundaries. See at \emph{[[boundary field theory]]} for more on this. In this abstract formulation of QFT a \textbf{brane} is a type of data assigned by the QFT to boundaries of cobordisms. \hypertarget{in__rational_cft}{}\paragraph*{{In $2d$ rational CFT}}\label{in__rational_cft} A well understood class of examples is this one: among all 2-dimensional [[conformal field theory]], the case of \emph{full rational 2d CFT} has been understood completely, using [[FFRS-formalism]]. It is then a theorem that full 2-rational CFTs are classified by \begin{enumerate}% \item a [[modular tensor category]] $\mathcal{C}$ (to be thought of as being the category of representations of the [[vertex operator algebra]] of the 2d CFT); \item a special symmetric [[Frobenius algebra]] object $A$ [[internalization|internal]] to $\mathcal{C}$. \end{enumerate} In this formulation a type of \textbf{brane} of the theory is precisely an $A$-[[module]] in $\mathcal{C}$ (an $A$-[[bimodule]] is a [[bi-brane]] or \emph{defect line} ): the 2d cobordisms with boundary on which the theory defined by $A \in \mathcal{C}$ carry as extra structure on their connected boundary pieces a label given by an equivalence class of an $A$-module in $\mathcal{C}$. The assignment of the CFT to such a cobordism with boundary is obtained by \begin{itemize}% \item triangulating the cobordism, \item labeling all internal edges by $A$ \item labelling all boundary pieces by the $A$-module \item all vertices where three internal edges meet by the multiplication operation \item and all points where an internal edge hits a moundary by the corresponding [[action]] morphism \item and finally evaluating the resulting [[string diagram]] in $\mathcal{C}$. \end{itemize} So in this abstract algebraic formulation of QFT on the worldvolume, a brane is just the datum assigned by the QFT to the boundary of a cobordism. But abstractly defined QFTs may arise from [[quantization]] of [[sigma model]]s. This gives these boundary data a geometric interpretation in some space. This we discuss in the next section. \hypertarget{in__tft}{}\paragraph*{{In $2d$ TFT}}\label{in__tft} Another case where the branes of a QFT are under good mathematical control is [[TCFT]]: the [[(infinity,1)-category]]-version of a 2d [[TQFT]]. Particularly the [[A-model]] and the [[B-model]] are well understood. \begin{itemize}% \item the branes of the B-model (``B-branes'') form the the [[stable (infinity,1)-category]] of [[chain complex]]es of [[quasicoherent sheaves]] on the target space (often considered just in terms of its [[homotopy category of an (infinity,1)-category]], the [[derived category]] of quasicoherent sheaves); \item the branes of the A-model form the [[Fukaya category]] of the target space. \end{itemize} (\ldots{}) \hypertarget{in_terms_of_geometric_data_of_the_model_background}{}\paragraph*{{In terms of geometric data of the $\sigma$-model background}}\label{in_terms_of_geometric_data_of_the_model_background} An abstractly defined QFT (as a consistent assignment of state spaces and propagators to cobordisms as in [[FQFT]]) may be obtained by [[quantization]] from \emph{geometric data} : Sich a \emph{[[sigma-model]] QFT} is the [[quantization]] of an [[action functional]] on a space of maps $\Sigma \to X$ from a cobordims (``worldvolume'') $\Sigma$ to some target space $X$ that may carry further geoemtric data such as a [[Riemannian metric]], or other background [[gauge field]]s. One may therefore try to match the geometric data on $X$ that encodes the $\sigma$-model with the algebraic data of the [[FQFT]] that results after quantization. This gives a geometric interpretation to many of the otherwise purely abstract algebraic properties of the worldvolume QFT. It turns out that if one checks which geometric data corresponds to the $A$-modules in the above discussion, one finds that these tend to come from structures that look at least roughly like \emph{submanifolds} of the target space $X$. And typically these submanifolds themselves carry their own background [[gauge field]] data. A well-understood case is the [[Wess-Zumino-Witten model]]: for this the target space $X$ is a simple [[Lie group]] $X = G$ and the background field is a [[circle n-bundle with connection|circle 2-bundle with connection]] (a [[bundle gerbe]]) on $G$, representing the background field that is known as the [[Kalb-Ramond field]]. In this case it turns out that branes for the sigma model on $X$ are given in the smplest case by conjugacy classes $D \subset G$ inside the group, and that these carry [[twisted bundle|twisted vector bundle]] with the twist given by the Kalb-Ramond background bundle. These vector bundles are known in the [[string theory]] literature as \emph{Chan-Paton vector bundles} . The geometric intuition is that a QFT with certain boundary condition comes form a quantization of spaces of maps $\Sigma \to G$ that are restricted to take the boundary of $\Sigma$ to these submanifolds. More generally, one finds that the geometric data that corresponds to the branes in the algebraically defined 2d QFT is given by cocycles in the twisted [[differential K-theory]] of $G$. These may be quite far from having a direct interpretation as submanifolds of $G$. The case of rational 2d CFT considered so far is only the best understood of a long sequence of other examples. Here the collection of all [[D-branes]] -- identified with the colleciton of all internal modules over an internal frobenius algebra, forms an ordinary [[category]]. More generally, at least for 2-dimensional [[TQFT]]s analogous considerations yield not just categories but [[stable (∞,1)-categories]] of boundary condition objects. For instance for what is called the [[B-model]] 2-d [[TQFT]] the category of [[D-branes]] is the [[derived category]] of [[coherent sheaves]] on some Calabi-Yau space. Starting with Kontsevich's [[homological algebra]] reformulation of [[homological mirror symmetry|mirror symmetry]] the study of (derived) D-brane categories has become a field in its own right in pure mathematics. \ldots{} lots of further things to say \ldots{} \hypertarget{fundamental_or_model_branes}{}\subsubsection*{{Fundamental or $\sigma$-model branes}}\label{fundamental_or_model_branes} In [[string theory]] one speaks apart from the [[D-branes]] also about \textbf{fundamental branes} . These are the objects $\Sigma$ in the $n$-dimensional [[sigma model]] themselves. \begin{itemize}% \item For $n=0$ this describes the ordinary quantum mechanics of a point particles on $X$. And such point particles are the \emph{fundamental particles} for instance of the [[standard model of particle physics]]. \item For $n=1$ this describes the quantum propagation of a [[string theory|string]], and accordingly one speaks of the \emph{fundamental string} or F1-brane (fundamental 1-brane). \item For $n=2$ this describes the quantum propagation of a membrane. \item There are good indications that there is a way to describe heterotic [[string theory]] not in terms of fundamental 1-branes but in terms of the [[sigma-model]] of a fundamental 5-brane -- the [[magnetic charge|magnetic dual]] of the 1-brane in 10-dimensions. \item etc. \end{itemize} [[!include brane scan]] \hypertarget{black_branes}{}\subsubsection*{{Black branes}}\label{black_branes} See \emph{[[black brane]]} . \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{worldvolume_theories}{}\subsubsection*{{Worldvolume theories}}\label{worldvolume_theories} [[!include table of branes]] \hypertarget{the_superbrane_scan}{}\subsubsection*{{The super-brane scan}}\label{the_superbrane_scan} If the worldvolume QFT of the fundamental branes (for instance the worlsheet 2d[[CFT]] of the string) is required to be a [[supersymmetric QFT]], specifically if the [[Green-Schwarz action functional]] is used only particular combinations of the dimenion $dim \Sigma = p + 1$ of the worldvolume and $D = dim X$ of [[spacetime]] are possible. The corresponding table has been called the \textbf{[[brane scan]]} [[branescan.gif:pic]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[wrapped brane]] \item [[brane intersection]] \item [[D-brane]], [[fractional D-brane]] \item [[sigma-model]] \item [[double dimensional reduction]] \item [[particle]], [[superparticle]] \item [[string]], [[superstring]] \item [[membrane]], [[M2-brane]], [[M5-brane]] \item [[NS5-brane]] \item [[D-brane]] \item [[electric eigenbrane]]. [[magnetic eigenbrane]] \end{itemize} [[!include field theory with boundaries and defects - table]] [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{prehistory}{}\subsubsection*{{Prehistory}}\label{prehistory} \begin{itemize}% \item [[Albert Einstein]], [[Leopold Infeld]], B. Hoffmann, \emph{The gravitational equations and the problem of motion}, Annals of Mathematics, Vol 39, No. 1, 1938 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Black_hole_electron}{Black hole electron}} \end{itemize} The terminology ``$p$-brane'' originates in \begin{itemize}% \item [[Mike Duff]], T. Inami, [[Christopher Pope]], [[Ergin Sezgin]], [[Kellogg Stelle]], \emph{Semiclassical Quantization of the Supermembrane}, Nucl.Phys. B297 (1988) 515-538 (\href{http://inspirehep.net/record/247064}{spire:247064}) \end{itemize} For more history see \begin{itemize}% \item [[Mike Duff]], \emph{Thirty years of Erice on the brane}, Based on lectures at the International Schools of Subnuclear Physics 1987-2017 and the International Symposium ``60 Years of Subnuclear Physics at Bologna'', University of Bologna, November 2018 (\href{https://arxiv.org/abs/1812.11658}{arXiv:1812.11658}) \end{itemize} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Pietro Fre]], \emph{The Branes: Three Viewpoints}, In: \emph{Gravity, a Geometrical Course} Springer 2013 (\href{http://inspirehep.net/record/1242195}{spire:1242195}, \href{https://doi.org/10.1007/978-94-007-5443-0_7}{doi:10.1007/978-94-007-5443-0\_7}) \item [[Greg Moore]], \emph{What is\ldots{} a brane?}, Notices of the AMS vol 52, no. 2 (\href{http://www.ams.org/notices/200502/what-is.pdf}{pdf}) \item Joan Simon, \emph{Brane Effective Actions, Kappa-Symmetry and Applications} (\href{http://arxiv.org/abs/1110.2422}{arXiv:1110.2422}) \item [[Luis Ibáñez]], [[Angel Uranga]], section 6.2 of \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge University Press 2012 \end{itemize} \hypertarget{boundary_conditions__dbranes}{}\subsubsection*{{Boundary conditions / D-branes}}\label{boundary_conditions__dbranes} (\ldots{}) See [[D-brane]]. For exhaustive details on D-branes in 2-dimensional rational [[CFT]] see the references given at \begin{itemize}% \item [[FFRS-formalism]]. \end{itemize} A classical text describing how the physics way to think of D-branes for the [[topological string]] leads to seeing that they are objects in [[derived categories]] (of [[coherent sheaves]] for the [[B-model]]) is reviewed in \begin{itemize}% \item [[Paul Aspinwall]], \emph{D-Branes on Calabi-Yau Manifolds} (\href{http://arxiv.org/abs/hep-th/0403166}{arXiv}) \end{itemize} based on \begin{itemize}% \item [[Michael Douglas]], \emph{D-branes, Categories and $N=1$ Supersymmetry}, J.Math.Phys. 42 (2001) 2818-2843 (\href{https://arxiv.org/abs/hep-th/0011017}{arXiv:hep-th/0011017}) \item [[Paul Aspinwall]], Albion Lawrence, \emph{Derived Categories and Zero-Brane Stability} (\href{https://arxiv.org/abs/hep-th/0104147}{arXiv:hep-th/0104147}) \end{itemize} This can to a large extent be read as a dictionary from [[homological algebra]] terminology to that of D-brane physics. More recent similar material with the emphasis on the [[K-theory]] aspects is \begin{itemize}% \item [[Richard Szabo]], \emph{[[Szabo09.pdf:file]]} \end{itemize} \hypertarget{fundamental_branes}{}\subsubsection*{{Fundamental branes}}\label{fundamental_branes} The ``[[brane scan]]'' table showing the consistent dimension pairs for the [[Green-Schwarz action functional]] was depicted in \begin{itemize}% \item [[Michael Duff]], \emph{Supermembranes: the first fifteen weeks} CERN-TH.4797/87 (\href{http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?198708425}{scan}) \end{itemize} going back to \begin{itemize}% \item A. Ach\'u{}carro, J. M. Evans, [[Paul Townsend]] and D. L. Wiltshire, \emph{Super $p$-branes} Physics Letters B Volume 198, Issue 4, 3 (1987) \end{itemize} Further developments are in More along these lines is in \begin{itemize}% \item [[Michael Duff]], S. Ferrara, \emph{Four curious supergravities} (\href{http://arxiv.org/abs/1010.3173}{arXiv}) \end{itemize} See also [[division algebras and supersymmetry]]. \hypertarget{branes_ending_on_branes}{}\subsubsection*{{Branes ending on branes}}\label{branes_ending_on_branes} \begin{itemize}% \item [[Andrew Strominger]], \emph{Open P-Branes}, Phys. Lett. B383:44-47,1996 (\href{http://arxiv.org/abs/hep-th/9512059}{arXiv:hep-th/9512059}) \end{itemize} [[!redirects branes]] [[!redirects branes]] [[!redirects fundamental brane]] [[!redirects fundamental branes]] [[!redirects NS-fivebrane]] [[!redirects NS-fivebranes]] [[!redirects p-brane]] [[!redirects p-branes]] \end{document}