\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bunched logic} \hypertarget{bunched_logic}{}\section*{{Bunched logic}}\label{bunched_logic} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{bunched_implications}{Bunched implications}\dotfill \pageref*{bunched_implications} \linebreak \noindent\hyperlink{relevance_logic}{Relevance logic}\dotfill \pageref*{relevance_logic} \linebreak \noindent\hyperlink{classical_bunched_implication}{Classical bunched implication}\dotfill \pageref*{classical_bunched_implication} \linebreak \noindent\hyperlink{categorical_semantics}{Categorical semantics}\dotfill \pageref*{categorical_semantics} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[logic]], and more specifically in [[sequent calculus]]/[[natural deduction]], a \textbf{bunched logic} is a logic in which the formulas in the [[context]] are not just a [[list]] or [[set]] but have some additional, usually [[tree]]-like, structure. This can be indicated syntactically by the use of two or more punctuation symbols, such as comma and semicolon, along with parentheses for grouping. Thus for instance a sequent with bunches might be written like \begin{displaymath} A,B,(C;(D,E);F),(G;H) \vdash K \end{displaymath} The contexts put together with both commas and semicolons are called \emph{bunches}. The general phrase \emph{bunched logic} is not entirely standard, although the word ``bunches'' has been used with more than one logic of this form (the original is ``bunched implication (BI)'', below). Each type of punctuation also comes with a nullary version. The punctuation symbols like comma and semicolon are sometimes called \emph{structural connectives}, since they are part of the judgmental structure (like [[structural rules]]) but are closely related to the [[logical connectives]] such as conjunction and disjunction. Usually the reason for using a bunched logic is that the different structural connectives obey different [[structural rules]]. For instance, the semicolon might allow the [[contraction rule]] and/or the [[weakening rule]], while the comma does not. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{bunched_implications}{}\subsubsection*{{Bunched implications}}\label{bunched_implications} In \textbf{bunched implications} logic (\hyperlink{BI}{BI}), the semicolon allows contraction and weakening while the comma does not. This allows defining both an [[additive conjunction]] and a [[multiplicative conjunction]], internalizing the semicolon and the comma respectively, such that both [[distributive law|distribute]] over the [[additive disjunction]] and moreover both come with a corresponding implication: the [[additive implication]] and the [[multiplicative implication]]. \hypertarget{relevance_logic}{}\subsubsection*{{Relevance logic}}\label{relevance_logic} Some forms of [[relevance logic]] can be presented with a bunched sequent calculus that is similar to BI, but in which the comma also has contraction (though not weakening) and there is no additive implication. See for instance (\hyperlink{Mints}{Mints}). \hypertarget{classical_bunched_implication}{}\subsubsection*{{Classical bunched implication}}\label{classical_bunched_implication} A logic of \textbf{classical bunched implication} is like BI but with arbitrary bunches on the right as well as on the left. On the right, the semicolon represents the [[additive disjunction]] and the comma represents a [[multiplicative disjunction]], and there are both an additive and a multiplicative [[negation]] that move formulas back and forth. Both negations are ``classical'' with respect to their corresponding connectives, e.g. we have $\sim\sim A \multimap A$ (where $\sim$ is the multiplicative negation and $\multimap$ the multiplicative implication) and also $\neg\neg A \to A$ (where $\neg$ is the additive negation and $\to$ the additive implication). See \hyperlink{Pym2002}{Pym 2002} and \href{https://nforum.ncatlab.org/discussion/4004/paraconsistent-logic/?Focus=57557#Comment_57557}{this discussion}. \hypertarget{categorical_semantics}{}\subsection*{{Categorical semantics}}\label{categorical_semantics} Bunched logics naturally have semantics in categories with more than one [[monoidal structure]], so that a bunch such as $(A,(B;C),((D,E);F))$ can be interpreted as $A \otimes (B\boxtimes C) \otimes ((D\otimes E)\boxtimes F)$. Frequently (e.g. if one kind of bunch admits contraction and weakening) one of the two monoidal structures is a [[cartesian monoidal category|cartesian]] one. A typical and motivating example of a model for BI is the [[category of presheaves]] $[C^{op},Set]$ over a monoidal category $C$, which comes equipped both with the ordinary [[ccc structure on presheaves]] as well as the closed monoidal structure given by [[Day convolution]]. \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[linear logic]] \item [[relevance logic]] \item [[separation logic]] \item [[display logic]] \item [[substructural logic]] \item [[monoidal topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Peter W. O'Hearn and David J. Pym, \emph{The Logic of Bunched Implications}. \href{http://www.lsv.ens-cachan.fr/~demri/OHearnPym99.pdf}{PDF} \end{itemize} \begin{itemize}% \item G. E. Mints. \emph{Cut-elimination theorem for relevant logics}, Zap. Nauchn. Sem. LOMI, 1972, Volume 32, Pages 90--97. (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=2569&option_lang=eng}{math-net.ru}). An English translation appears in the Journal of Soviet Mathematics 6 (1976) pp.422-8. (\href{http://doi.org/10.1007/BF01084083}{doi}) \end{itemize} \begin{itemize}% \item Bodil Biering, \emph{On the logic of bunched implications - and its relation to separation logic}, \href{http://www.itu.dk/people/biering/papers/speciale.ps}{masters thesis} \item David Pym, \emph{The Semantics and Proof Theory of the Logic of Bunched Implications}, \href{https://books.google.com/books/about/The_Semantics_and_Proof_Theory_of_the_Lo.html?id=0bAfqhzDuOcC&redir_esc=y}{Google books} \end{itemize} \begin{itemize}% \item Brotherston and Calcagno, \emph{Classical BI: Its Semantics and Proof Theory}, \href{http://arxiv.org/abs/1005.2340}{arxiv} \end{itemize} [[!redirects bunched logics]] [[!redirects bunch]] [[!redirects bunches]] [[!redirects bunched implication]] [[!redirects bunched implications]] [[!redirects BI]] [[!redirects structural connective]] [[!redirects structural connectives]] \end{document}