\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{bundle gerbe} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Interpretation}{Interpretation}\dotfill \pageref*{Interpretation} \linebreak \noindent\hyperlink{AsGroupoidExtension}{As a groupoid extension}\dotfill \pageref*{AsGroupoidExtension} \linebreak \noindent\hyperlink{AsTotalSpace}{As the total space of a principal 2-bundle}\dotfill \pageref*{AsTotalSpace} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{equivariant_bundle_gerbes_over_the_point}{Equivariant bundle gerbes over the point}\dotfill \pageref*{equivariant_bundle_gerbes_over_the_point} \linebreak \noindent\hyperlink{tautological_bundle_gerbe}{Tautological bundle gerbe}\dotfill \pageref*{tautological_bundle_gerbe} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{bundle gerbe} is a special model for the total space [[Lie groupoid]] of a $\mathbf{B}U(1)$-[[principal 2-bundle]] for $\mathbf{B}U(1)$ the . More generally, for $G$ a more general [[Lie 2-group]] (often taken to be the [[automorphism 2-group]] $G = AUT(H)$ of a [[Lie group]] $H$), a [[nonabelian bundle gerbe]] for $G$ is a model for the total space groupoid of a $G$-[[principal 2-bundle]]. The definition of \emph{bundle gerbe} is not in fact a special case (nor a generalization) of the definition of [[gerbe]], even though there are equivalences relating both concepts. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{bundle gerbe} over a [[smooth manifold]] $X$ is \begin{itemize}% \item a [[surjective submersion]] \begin{displaymath} \itexarray{ Y \\ \downarrow^{\mathrlap{\pi}} \\ X } \end{displaymath} \item together with a $U(1)$-[[principal bundle]] \begin{displaymath} \itexarray{ L \\ \downarrow^{\mathrlap{p}} \\ Y \times_X Y } \end{displaymath} over the [[fiber product]] of $Y$ with itself, i.e. \begin{displaymath} \itexarray{ L \\ \downarrow^{\mathrlap{p}} \\ Y \times_X Y &\stackrel{\overset{\pi_1}{\rightarrow}}{\underset{\pi_2}{\rightarrow}}& Y \\ && \downarrow^{\mathrlap{\pi}} \\ && X } \,, \end{displaymath} \item an [[isomorphism]] \begin{displaymath} \mu : \pi_{12}^*L \otimes \pi_{23}^*L \to \pi_{13}^* L \end{displaymath} of $U(1)$-bundles on $Y \times_X Y \times_X Y$ \item such that this satisfies the evident associativity condition on $Y\times_X Y \times_X Y \times_X Y$. \end{itemize} Here $\pi_{12}, \pi_{23}, \pi_{13}$ are the three maps \begin{displaymath} Y^{[3]} \stackrel{\stackrel{\rightarrow}{\rightarrow}}{\rightarrow} Y^{[2]} \end{displaymath} in the [[Cech nerve]] of $Y \to X$. In a [[nonabelian bundle gerbe]] the bundle $L$ is generalized to a [[bibundle]]. \hypertarget{Interpretation}{}\subsection*{{Interpretation}}\label{Interpretation} A bundle gerbe may be understood as a specific model for the total space [[Lie groupoid]] of a [[principal 2-bundle]]. We first describe this Lie groupoid in \begin{itemize}% \item \hyperlink{AsGroupoidExtension}{As a groupoid extension} \end{itemize} and then describe how this is the total space of a principal 2-bundle in \begin{itemize}% \item \hyperlink{AsTotalSpace}{As the total space of a 2-bundle}. \end{itemize} \hypertarget{AsGroupoidExtension}{}\subsubsection*{{As a groupoid extension}}\label{AsGroupoidExtension} Give a surjective submersion $\pi : Y \to X$, write \begin{displaymath} C(Y) := \left( Y \times_X Y \stackrel{\to}{\to} Y \right) \end{displaymath} for the corresponding [[Cech groupoid]]. Notice that this is a [[resolution]] of the [[smooth manifold]] $X$ itself, in that the canonical projection is a weak equivalence (see [[infinity-Lie groupoid]] for details) \begin{displaymath} \itexarray{ C(Y) \\ \downarrow^{\mathrlap{\simeq}} \\ X } \,. \end{displaymath} The data of a bundle gerbe $(Y,L,\mu)$ induces a [[Lie groupoid]] $P_{(Y,L,\mu)}$ which is a $\mathbf{B}U(1)$-extension of $C(Y)$, exhibiting a [[fiber sequence]] \begin{displaymath} \mathbf{B}U(1) \to P_{(Y,L,\mu)} \to X \,. \end{displaymath} This Lie groupoid is the groupoid whose space of morphisms is the total space $L$ of the $U(1)$-bundle \begin{displaymath} P_{(Y,L,\mu)} = \left( L \stackrel{\overset{\pi_1 \circ p}{\to}}{\underset{\pi_2 \circ p}{\to}} Y \right) \end{displaymath} with composition given by the composite \begin{displaymath} L \times_{s,t} L \stackrel{\simeq}{\to} \pi_{12}^* L \times \pi_{23}^3* L \stackrel{}{\to} \pi_{12}^* L \otimes \pi_{23}^3* L \stackrel{\mu}{\to} \pi_{13}^* L \to L \,. \end{displaymath} \hypertarget{AsTotalSpace}{}\subsubsection*{{As the total space of a principal 2-bundle}}\label{AsTotalSpace} We discuss how a bundle gerbe, regarded as a [[groupoid]], is the total space of a $\mathbf{B}U(1)$-[[principal 2-bundles]]. Recall from the discussion at [[principal infinity-bundle]] that the total $G$ 2-bundle space $P \to X$ classified by a cocycle $X \to \mathbf{B} G$ is simply the [[homotopy fiber]] of that cocycle. This we compute now. (For more along these lines see [[infinity-Chern-Weil theory introduction]]. For the analogous nonabelian case see also [[nonabelian bundle gerbe]].) \begin{prop} \label{}\hypertarget{}{} The Lie groupoid $P_{(Y,L,\mu)}$ defined by a bundle gerbe is in [[?LieGrpd]] the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ P_{(Y,L,\mu)} &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ X &\stackrel{g}{\to}& \mathbf{B}^2 U(1) } \end{displaymath} of a [[cocycle]] $[g] \in H(X,\mathbf{B}^2 U(1)) \simeq H^3(X,\mathbb{Z})$. \end{prop} In fact a somewhat stronger statement is true, as shown in the following proof. \begin{proof} We can assume without restriction that the bundle $L$ in the data of the bundle gerbe is actually the trivial $U(1)$-bundle $L = Y \times_X Y \times U(1)$ by refining, if necessary, the surjective submersion $Y$ by a [[good open cover]]. In that case we may identify $\mu$ with a $U(1)$-valued function \begin{displaymath} \mu : Y \times_X Y \times_X Y \to U(1) \end{displaymath} which in turn we may identify with a smooth 2-[[anafunctor]] \begin{displaymath} \itexarray{ C(U) &\stackrel{\mu}{\to}& \mathbf{B}^2 U(1) \\ \downarrow^{\mathrlap{\simeq}} \\ X } \,. \end{displaymath} From here on the computation is a special case of the general theory of [[groupoid cohomology]] and the extensions classified by it. Then recall from [[universal principal infinity-bundle]] that we model the $(\infty,1)$-pullbacks that defines principal $\infty$-bundles in terms of ordinary pullbacks of the universal $\mathbf{B}U(1)$-principal 2-bundle $\mathbf{E}\mathbf{B}U(1) \to \mathbf{B}^2 U(1)$. We may model all this in the case at hand in terms of [[strict omega-groupoid|strict 2-groupoip]]s. Then using an evident cartoon-notation we have \begin{displaymath} \mathbf{B}^2 U(1) = \left\{ \itexarray{ & \nearrow \searrow \\ \bullet &\Downarrow^{\mathrlap{c \in U(1)}}& \bullet \\ & \searrow \nearrow } \right\} \end{displaymath} and $\mathbf{E}\mathbf{B}U(1)$ is the 2-groupoid whose \emph{morphisms} are diagrams \begin{displaymath} \itexarray{ && \bullet \\ & \nearrow &\swArrow_{c}& \searrow \\ \bullet &&\to&& \bullet } \end{displaymath} in $\mathbf{B}^2 U(1)$ with composition given by horizontal [[pasting]] \begin{displaymath} \itexarray{ &&& \bullet \\ & \swarrow &\swArrow_{c_1} & \downarrow &\swArrow_{c_2}& \searrow \\ \bullet &\to&& \bullet &&\to& \bullet } \end{displaymath} and 2-morphisms are paper-cup diagrams \begin{displaymath} \itexarray{ && \bullet \\ & \nearrow &\swArrow_{c}& \searrow \\ \bullet &&\to&& \bullet \\ & \searrow &\swArrow_{k}& \swarrow \\ && \bullet } \;\;\;\;\; = \;\;\;\;\; \itexarray{ && \bullet \\ & \nearrow &\swArrow_{c k}& \searrow \\ \bullet &&\to&& \bullet } \,. \end{displaymath} So $\mathbf{E}\mathbf{B}U(1)$ is the Lie 2-groupoid with a single object, with $U(1)$ worth of 1-morphisms and unique 2-morphism between these. From this we read of that \begin{displaymath} \itexarray{ P_{(Y,L,\mu)} &\to& \mathbf{E} \mathbf{B}U(1) \\ \downarrow && \downarrow \\ C(U) &\stackrel{\mu}{\to}& \mathbf{B}^2 U(1) \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} is indeed a [[pullback]] square (in the category of [[simplicial presheaves]] over [[CartSp]]). The morphisms of the pullback Lie groupoid are pairs of diagrams \begin{displaymath} \itexarray{ && \bullet \\ & \nearrow &\swArrow_{c}& \searrow \\ \bullet &&\to&& \bullet \\ \\ (x,i) &&\to&& (x,j) } \end{displaymath} hence form a trivial $U(1)$-bundle over the morphisms of $C(U)$, and the 2-morphims are pairs consisting of 2-morphisms \begin{displaymath} \itexarray{ && (x,j) \\ & \nearrow &\swArrow& \searrow \\ (x,i) &&\to&& (x,k) } \end{displaymath} in $C(U)$ and paper-cup diagrams of the form \begin{displaymath} \itexarray{ &&& \bullet \\ & \swarrow &\swArrow_{c_1} & \downarrow &\swArrow_{c_2}& \searrow \\ \bullet &\to&& \bullet &&\to& \bullet \\ & \searrow &&\swArrow_{\mu_{i j k}(x)}&&& \swarrow } \;\;\;\; = \;\;\;\; \itexarray{ && \bullet \\ & \nearrow &\swArrow_{c_1 c_2 \mu_{i j k}(x)}& \searrow \\ \bullet &&\to&& \bullet } \end{displaymath} in $\mathbf{B}^2 U(1)$, which exhibits indeed the composition operation in $P_{(Y,L,\mu)}$. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{equivariant_bundle_gerbes_over_the_point}{}\subsubsection*{{Equivariant bundle gerbes over the point}}\label{equivariant_bundle_gerbes_over_the_point} For $A \to \hat G \to G$ a [[group]] extension by an [[abelian group]] $G$ classified by a 2-cocycle $c$ in [[group cohomology]], which we may think of as a 2-functopr $c : \mathbf{B}\mathbf{G} \to \mathbf{B}^2 A$, the corresponding [[fiber sequence]] \begin{displaymath} A \to \hat G \to G \to \mathbf{B}A \to \mathbf{B}\hat G \to \mathbf{B}G \stackrel{c}{\to} \mathbf{B}^2 A \end{displaymath} exhibits $\mathbf{B}\hat G$ as the bundle gerbe over $\mathbf{B}G$ (in [[equivariant cohomology]] of the point, if you wish) with Dixmier-Douady class $c$. \hypertarget{tautological_bundle_gerbe}{}\subsubsection*{{Tautological bundle gerbe}}\label{tautological_bundle_gerbe} Let $X$ be a [[simply connected]] [[smooth manifold]] and $H \in \Omega^3(X)_{cl, int}$ a degree 3 [[differential form]] with integral periods. We may think of this a cocycle in [[∞-Lie algebroid cohomology]] \begin{displaymath} H : T X \to b^2 \mathbb{R} \,. \end{displaymath} By a slight variant of we obtain from this a bundle gerbe on $X$ by the following construction \begin{itemize}% \item pick any point $x_0 \in X$; \item let $Y = P_* X$ be the based smooth [[path space]] of $X$; \item let $L \to Y \times_X Y$ be the $U(1)$-bundle which over an element $(\gamma_1,\gamma_2)$ in $Y \times_X Y$ -- which is a \emph{loop} in $X$ assigns the $U(1)$-[[torsor]] whose elements are equivalence class of pairs $(\Sigma,c)$, where $\Sigma$ is a surface cobounding the loop and where $c \in U(1)$, and where the equivalence relation is so that for any 3-ball $\phi : D^3 \to X$ cobounding two such surfaces $\Sigma_1$ and $\Sigma_2$ we have that $(\Sigma_1,c_1)$ is equivalent to $(\Sigma_2, c_2)$ the difference of the labels differs by the [[integral]] of the 3-form \begin{displaymath} c_2 c_1^{-1} = \int_{D^3} \phi^* H \in \mathbb{R}/\mathbb{Z} \,. \end{displaymath} \item the composition operation $\pi_{12}^* L \otimes \pi_{23}^* L \to \pi_{13}^* L$ is loop-wise the evident operation that on loops removes from a figure-8 the inner bit and whch is group multiplication of the labels. \end{itemize} This produces a bundle gerbe whose class in $H^3(X,\mathbb{Z})$ has $[H]$ as its image in [[de Rham cohomology]]. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[centrally extended groupoid]] \item [[line 2-bundle]], [[holomorphic line 2-bundle]] \item [[transgression of bundle gerbes]] \item [[connection on a bundle gerbe]] \item [[discrete torsion]] \end{itemize} and \begin{itemize}% \item [[principal bundle]] / [[torsor]] / [[associated bundle]] \item [[principal 2-bundle]] / [[gerbe]] / \textbf{bundle gerbe} \item [[principal 3-bundle]] / [[bundle 2-gerbe]] \item [[principal ∞-bundle]] / [[associated ∞-bundle]] \end{itemize} especially \begin{itemize}% \item [[circle n-bundle with connection]], [[ordinary differential cohomology]]. \end{itemize} For applications in [[string theory]] see also \begin{itemize}% \item [[B-field]], [[WZW model]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of \emph{bundle gerbe} as such was introduced in \begin{itemize}% \item [[Michael Murray]], \emph{Bundle gerbes}, J.Lond.Math.Soc. \textbf{54} (1996) pp403-416, arXiv:\href{http://arxiv.org/abs/dg-ga/9407015}{dg-ga/9407015}. \end{itemize} Early texts also include \begin{itemize}% \item [[David Chatterjee]], \emph{On Gerbs}, 1998 (\href{https://people.maths.ox.ac.uk/hitchin/files/StudentsTheses/chatterjee.pdf}{pdf}) \end{itemize} (notice that the title here suppresses one ``e'' intentionally); \begin{itemize}% \item [[Michael Murray]], [[Danny Stevenson]], \emph{Bundle gerbes: stable isomorphism and local theory}, J.Lond.Math.Soc. \textbf{62} (2000) 925-937 arXiv:\href{https://arxiv.org/abs/math/9908135}{math/9908135} \end{itemize} A general picture of bundle $n$-gerbes (with connection) as [[circle n-bundle with connection|circle (n+1)-bundles with connection]] classified by [[Deligne cohomology]] is in \begin{itemize}% \item [[Pawel Gajer]], \emph{Geometry of Deligne cohomology} Invent. Math., 127(1):155-207 (1997) (\href{http://arxiv.org/abs/alg-geom/9601025}{arXiv}) \end{itemize} Reviews are in \begin{itemize}% \item [[Nigel Hitchin]], \emph{What is\ldots{}a gerbe?}, Notices of the AMS \textbf{50} no. 2 (2003) pp 218-219 \href{http://www.ams.org/notices/200302/what-is.pdf}{pdf} \item [[Michael Murray]], \emph{An Introduction to Bundle Gerbes}, In: The Many Facets of Geometry, A Tribute to Nigel Hitchin, Edited by Oscar Garcia-Prada, Jean Pierre Bourguignon, [[Simon Salamon]], OUP, 2010. doi:\href{http://dx.doi.org/10.1093/acprof:oso/9780199534920.001.0001}{10.1093/acprof:oso/9780199534920.001.0001}, arXiv:\href{https://arxiv.org/abs/0712.1651}{0712.1651} \end{itemize} [[!redirects bundle gerbes]] \end{document}