\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{calculus of fractions} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{additional_conditions}{Additional conditions}\dotfill \pageref*{additional_conditions} \linebreak \noindent\hyperlink{construction_of_the_localization}{Construction of the localization}\dotfill \pageref*{construction_of_the_localization} \linebreak \noindent\hyperlink{properties_of_the_localization}{Properties of the Localization}\dotfill \pageref*{properties_of_the_localization} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A class $W$ of [[weak equivalence]]s in a [[category]] $C$ is said to admit a \textbf{calculus of fractions} if it satisfies some axioms ensuring that its [[localization]] $C[W^{-1}]$ can be constructed in a particularly simple way using `one-step generalized morphisms.' These axioms are a categorical analogue of the notion of a [[multiplicative system]] at which one can localize a ring. Since composition in a category is generally non-commutative, we distinguish `left' and `right' calculi of fractions, just as for localization of non-commutative rings. In either case $C[W^{-1}]$ is referred to as a [[category of fractions]], since its morphisms are two-step zigzags (either $\overset{f}{\to} \overset{w}{\leftarrow}$ or $\overset{w}{\leftarrow} \overset{f}{\to}$, depending on the handedness of the calculus) in which $w\in W$, which we can think of as `fractions' $w^{-1} f$ or $f w^{-1}$. One sometimes also says that $(C,W)$ `admits a category of fractions.' \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A pair $(C,W)$ of a [[category]] $C$ and a class of [[morphism]]s $W$ is said to admit a \textbf{calculus of right fractions} if the following properties hold. \begin{itemize}% \item $W$ is a [[wide subcategory]] of $C$ (that is, $W$ contains all identities and is closed under composition). \item (right Ore condition) Given an arrow $v:x\to z$ in $W$ and any arrow $f: y\to z$, there is an arrow $v':w \to y$ in $W$ and an arrow $f':w \to x$ in $C$ such that\begin{displaymath} \begin{matrix} w& \stackrel{f'}{\to} & x \\ v' \downarrow&&\, \downarrow v\\ y &\underset{f}{\to} & z \end{matrix} \end{displaymath} commutes. \item (right cancellability) Given an arrow $v:y\to z$ in $W$ and a pair of [[parallel morphisms]] $f,g: x\to y$ such that $v\circ f = v \circ g$, there is an arrow $v':w\to x$ in $W$ such that $f\circ v' = g \circ v'$:\begin{displaymath} w \xrightarrow{v'} x \underoverset{g}{f}{\rightrightarrows} y \xrightarrow{v} z \end{displaymath} \end{itemize} One may also say that $W$ is a \textbf{right Ore system} in $C$ (although this is potentially confusing since the Ore condition is only part of the definition), or that $(C,W)$ \textbf{admits a category of right fractions}. If $(C^{op}, W^{op})$ admits a calculus of right fractions, we say that $(C,W)$ admits a \textbf{calculus of left fractions}. Unfortunately there is no uniformity regarding the choice of `left' versus `right;' some authors use `left' where we use `right' and vice versa. \hypertarget{additional_conditions}{}\subsubsection*{{Additional conditions}}\label{additional_conditions} It is common to assume additional closure conditions on $W$ which make no difference to the localization. For example, one often assumes that $W$ contains all isomorphisms in $C$. One can also assume the [[2-out-of-3 property]] (so that $(C,W)$ is a [[category with weak equivalences]]) or the stronger [[2-out-of-6 property]] (so that $(C,W)$ is a [[homotopical category]]). Note that the 2-out-of-3 property includes closure under composition, and the 2-out-of-6 property together with containment of all identities implies containment of all isomorphisms. In the presence of either sort of calculus of fractions, the 2-out-of-6 property is equivalent to \emph{saturation} of $W$, i.e. that any morphism in $C$ which becomes an isomorphism in $C[W^{-1}]$ is already in $W$. Therefore, in this case we may equivalently call $(C,W)$ \emph{saturated}. See [[2-out-of-6 property]] for a proof, taken from 7.1.20 of [[Categories and Sheaves]] (where a pair $(C,W)$ admitting a calculus of left fractions is called a \emph{right multiplicative system}). \hypertarget{construction_of_the_localization}{}\subsection*{{Construction of the localization}}\label{construction_of_the_localization} Suppose that $(C,W)$ admits a calculus of right fractions. Then the [[localization]] of $C$ at $W$ can be realized by taking the same objects as in $C$ and the [[hom-set]] $C[W^{-1}](a,b)$ to be the set of [[equivalence classes]] of [[span|spans]] whose left leg is in $W$, under the equivalence relation where $a\stackrel{v}\leftarrow a'\stackrel{f}\rightarrow b$ is equivalent to $a\stackrel{w}\leftarrow a''\stackrel{g}\rightarrow b$ iff there exists an object $\bar{a}$ and morphisms $s:\bar{a}\to a'$, $t:\bar{a}\to a''$ such that $f\circ s = g\circ t$, $v\circ s = w\circ t$, and $v\circ s = w\circ t$ is in $W$. We denote the equivalence class of $a\stackrel{v}\leftarrow a'\stackrel{f}\rightarrow b$ by $f\circ v^{-1}$. These equivalence classes compose as follows: take a representative $a\stackrel{v}\leftarrow a'\stackrel{f}\rightarrow b$ and a representative $b\stackrel{u}\leftarrow b'\stackrel{h}\rightarrow c$; then by the Ore condition there exist morphisms $z:d\to a'$ and $k:d\to b'$, where $z\in W$, such that $f\circ z= u\circ k$. The composition $(h\circ u^{-1})\circ (f\circ v^{-1})$ is the equivalence class of the span $a\stackrel{v\circ z}\leftarrow d\stackrel{h\circ k}\rightarrow c$. One proves that this definition does not depend on the choice of representatives, and that it is associative with units $1_a\circ 1^{-1}_a$. Obviously, the localization functor $C\to C[W^{-1}]$ sends a morphism $p : a\to b$ to $p\circ 1^{-1}_a$. If instead $(C,W)$ admits a calculus of left fractions, the hom-sets of $C[W^{-1}]$ are equivalence classes of [[cospan]]s (spans in opposite category). In fact, we can realize $C[W^{-1}]$ as $(C^{\mathrm{op}}[(W^{\mathrm{op}})^{-1}])^{\mathrm{op}}$. Note that \emph{two} dualizations are involved, in order to get the cospans to be pointing in the correct direction. An equivalent way to say this is that if $W$ admits a calculus of right fractions, then the hom-sets in $C[W^{-1}]$ are obtained as the colimit over maps in $C$ out of a $W$-replacement of the source object: \begin{displaymath} Hom_{C[W^{-1}]}(X,Y) = \underset{X' \stackrel{p \in W}{\to}X}{colim} Hom_C(X',Y). \end{displaymath} Dually, if $W$ admits a calculus of left fractions, we instead take the colimit over maps into a $W$-replacement under the target object: \begin{displaymath} Hom_{C[W^{-1}]}(X,Y) = \underset{Y \stackrel{i \in W}{\to} Y'}{colim} Hom_C(X,Y'). \end{displaymath} If $W$ admits both a left and a right calculus of fractions, then both prescriptions coincide and are equivalent to taking a colimit over replacements of both objects: \begin{displaymath} \begin{aligned} Hom_{C[W^{-1}]}(X,Y) &= \underset{X' \stackrel{p \in W}{\to}X}{colim} Hom_C(X',Y) \\ &= \underset{Y \stackrel{i \in W}{\to} Y'}{colim} Hom_C(X,Y') \\ &= \underset{X' \stackrel{p \in W}{\to}X, Y \stackrel{i \in W}{\to} Y'}{colim} Hom_C(X',Y') \end{aligned} \,. \end{displaymath} \hypertarget{properties_of_the_localization}{}\subsection*{{Properties of the Localization}}\label{properties_of_the_localization} One important consequence of this construction is that when $W$ admits a calculus of right fractions, the localization functor $Q:C\to C[W^{-1}]$ is left [[exact functor|exact]], and therefore preserves all finite [[limit]]s existing in $C$. Dually, if $W$ admits a calculus of left fractions, then $Q$ is right exact and preserves finite colimits. Another important fact is that if \begin{itemize}% \item $W$ admits a calculus of right fractions, \item $C$ admits all small [[filtered colimits]], and \item for all $X \in C$ the category $W/X$, whose objects are morphisms $X'\to X$ in $W$ and whose morphisms are commutative triangles, is [[cofinally small category|cofinally small]], \end{itemize} then $C[W^{-1}]$ is [[locally small category|locally small]]. In this case a left [[derived functor]] of any functor $F:C\to A$, where $A$ admits small filtered colimits, can be constructed as the colimit \begin{displaymath} R_W F(X) = \underset{X \stackrel{s \in W}{\to} X'}{\colim} F(X'). \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $C$ is a [[category of fibrant objects]] and $\pi C$ its category of morphisms modulo [[homotopy]], the collection of weak equivalences in $\pi C$ admits a calculus of right fractions. The corresponding localization is the homotopy category $\Ho(C)$ of $C$. Note that this example does not satisfy the 2-out-of-3 property. \item Given a [[null system]] $N$ in a [[triangulated category]] $C$, the collection of morphisms $f : X \to Y$ in $C$ such that there is a distinguished triangle $X \to Y \to Z$ where $Z \in N$ admits calculi of both left and right fractions. \item For $S$ a [[site]], the collection of [[local epimorphism]]s in $C = [S^{op},Set]$ with respect to the given [[Grothendieck topology]] on $S$ admits a calculus of right fractions. In this case the localization is the [[category of sheaves]] on $S$. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[localization]] \item [[colocalization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The above definition is due to \begin{itemize}% \item [[Pierre Gabriel]], [[Michel Zisman]], \emph{[[Calculus of fractions and homotopy theory]]}, \emph{Ergebnisse der Mathematik und ihrer Grenzgebiete}, Band 35. Springer, New York (1967). \end{itemize} See also \begin{itemize}% \item [[Frank Adams]], part III, section 14 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Francis Borceux]], vol 1, chapter 5 of: \emph{[[Handbook of Categorical Algebra]], Cambridge University Press (1994)} \end{itemize} [[!redirects left calculus of fractions]] [[!redirects right calculus of fractions]] [[!redirects calculus of left fractions]] [[!redirects calculus of right fractions]] \end{document}